

ENGINEERING INFRASTRUCTURE REPORT & STORMWATER IMPACT ASSESSMENT for a Residential/Commercial Development at Kilternan Village, Kilternan, Dublin 18.

PROJECT:KILTERNAN VILLAGE SHD - 2104CLIENT:LISCOVE LTDDATE:JUNE 2022ISSUE NO:PLANNINGISSUED BY:ROGER MULLARKEY

©UNCREEVAN, ☆ILCOCK, @o.KILDARE Ph: 01 6103755 Mob: 087 2324917 Email: <u>info@rmullarkey.ie</u> Web www.rmullarkey.ie

TABLE OF CONTENTS

1.0	INTRODUCTION	Р5
2.0	KEY OBJECTIVES	Р5
3.0	SITE LOCATION & TOPOGRAPHY	P6
4.0	EXISTING DRAINAGE & WATER SERVICES	P9
5.0	KEY DESIGN REFERENCE DOCUMENTS	P10
6.0	STORMWATER IMPACT ASSESSMENT	P11
7.0	SUSTAINABLE DRAINAGE SYSTEMS (SUDS)	P30
8.0	DETERMINATION OF QBAR	P42
9.0	S/W DESIGN CONCLUSION	P49
10.0	WASTEWATER INFRASTRUCTURE	P50
11.0	SITE WATERMAIN	P53
12.0	APPENDIX	P56

Schedule of RMA drawings accompanying this application;

2104/01 Road & Block Levels - Sheet 1	(A1)
2104/02 Road & Block Levels - Sheet 2	(A1)
2104/03 Surface Water Drainage Layout - Sheet 1	(A1)
2104/04 Surface Water Drainage Layout - Sheet 2	(A1)
2104/05 Drainage Outfalls	(A1)
2104/06 Foul Drainage Layout - Sheet 1	(A1)
2104/07 Foul Drainage Layout - Sheet 2	(A1)
2104/08 Drainage Masterplan	(A1)
2104/09 Watermain Layout - Sheet 1	(A1)
2104/10 Watermain Layout - Sheet 2	(A1)
2104/11 Watermain Hydrant Circles	(A4)
2104/12 Exceedance Overflow Route	(A3)
2104/13 Catchment Interception & Paved Areas	(A1)
2104/14 SuDS Details	(A1)
2104/15 Attenuation Tank Details	(A1)
2104/16 Road Details - Sheet 1	(A1)
2104/17 Road Details - Sheet 2	(A1)
2104/18 Water and Drainage Phasing	(A1)
2104/19 Undercroft Drainage & Typical Foundations	(A1)
2104/20 Manhole Details	(A1)
2104/23 S/W Longitudinal Sections - Sheet 1	(A1)
2104/24 S/W Longitudinal Sections - Sheet 2	(A1)
2104/25 S/W Longitudinal Sections - Sheet 3	(A1)
2104/26 S/W Longitudinal Sections - Sheet 4	(A1)
2104/27 Foul Longitudinal Sections - Sheet 1	(A1)
2104/28 Foul Longitudinal Sections - Sheet 2	(A1)
2104/29 Foul Longitudinal Sections - Sheet 3	(A1)
2104/30 Foul Longitudinal Sections - Sheet 4	(A1)

Appendices

- 12.1 MicroDrainage Drainage Calculations
- 12.2 Interception and Sample Swale Calculations
- 12.3 StormTech System Calculations & Details
- 12.4 OPW PFRA Map No.2019/MAP/221/A
- 12.5 HR Wallingford/UK SuDS Report
- 12.6 SuDS Audit Report
- 12.7 GSI Data
- 12.8 Site Investigations Reports
- 12.9 DLRCC Flood Zone Map No.9
- 12.10 DLRCC Local Area Plan Map.NoPL-13-402
- 12.11 IW/DLRCC Records Drawings
- 12.12 OPW Flood Hazard Mapping Report
- 12.13 Green Roof Information
- 12.14 Met Eireann Data Sheet
- 12.15 Letters of Consent
- 12.16 Irish Water CoF/Design Acceptance Letters
- 12.17 DLRCC GDRS Project Correspondence
- 12.18 Water and Wastewater Calculations

1.0 Introduction

- 1.1 This document relates to the Drainage & Water Infrastructure design, including the Storm Water Impact Assessment, for a proposed mixed residential/commercial development located on lands at Wayside, Enniskerry Road, Kilternan, Dublin 18.
- 1.2 We, Roger Mullarkey & Associates, were appointed by Liscove Ltd. to carry out the drainage and water supply infrastructure report to accompany the suite of other drawings and documentation relating to a proposed residential and commercial development at the above noted address.
- 1.3 The site development area is c.10.8Ha, is currently predominately greenfield and includes a derelict house & outbuildings.
- 1.4 The development will principally consist of a mixed-use development consisting of 383 No. residential units and a Neighbourhood Centre (NC) incorporating a creche/office/medical/retail/community use. Please refer to Thornton O'Connor Planning Consultants for a full development description.

2.0 Key Objectives

- 2.1 This document relates to the Drainage and Water Infrastructure engineering that incorporates the design, background, and detail of the following aspects;
 - Road & Block Levels
 - Sustainable Drainage Systems (SuDS)
 - Storm Water Impact Assessment
 - Attenuation
 - Foul Water
 - Potable Drinking Water Infrastructure
- 2.2 Aspects relating to the Flood Risk Assessment are detailed in a separate document entitled the Site-Specific Flood Risk Assessment and the reader is referred to that report for further information in that regards.
- 2.3 Roads access and traffic/transportation assessments are contained in the separate submission documentation by Atkins Consulting Engineers included in the overall planning submission.
- 2.4 Reference should be made to all drainage drawings and designs included in the appendix of this report and all other consultant's reports and drawings as part of the overall application documentation.

3.0 Site Location & Topography

3.1 The lands are located just east of the Enniskerry Road and south of the Glenamuck Road in Kilternan, Dublin18.

- Fig. 1 Site Location
- 3.2 The site development area is c.10.8Ha, is currently predominately greenfield and includes a derelict house & outbuildings. It is noted that the surface water drained area is c.9.92Ha and is used for the Qbar and drainage calculations.
- 3.3 The topography is generally a gradually increasing slope downwards from the Enniskerry Road (western boundary) in a North-easterly direction and

then falls off sharply (c 1/10 gradient) towards the eastern boundary. A site survey drawing is included in the application and can be viewed as background on the drawing RMA Dwg.No.2104/01 & 02.

Fig.2 - Topography

- 3.4 The site is bounded by a c.1.2m high existing stone wall to the west (Enniskerry Rd), by hedgerows/trees to the northwest and north, by the Glenamuck Road to the far north, by an existing stone wall onto the Rockville development (Reg.Ref.D17A/0793 & D18A/0566 & D20A/0015) to the northeast, by open green field and the future Glenamuck Link Distributor Road (GLDR) as part of the Glenamuck District Roads Scheme (GDRS) to the east and by hedgerow and a petrol station and detached house rear gardens along the southern boundary.
- 3.5 The GLDR as part of the GDRS will bound the subject lands to the east and along the upgraded Glenamuck Road to the north of the site.
- 3.6 Consultations between the applicants and their agents with the Dun Laoghaire Rathdown County Councils (DLRCC) GDRS project team have taken place over several years. The interface between the GDRS and the proposed Kilternan Village development has been identified on the application drawings and land transfers between the applicant and DLRCC have been agreed to facilitate the GDRS project.
- 3.7 Road access from the Kilternan Village land and the GLDR has been facilitated in the contract documents of the GDRS, the detail of which is the included in this planning application and is subject to a successful grant of planning under the SHD process. Refer to the MCORM Architects and Atkins Ireland Traffic & Transportation consultants' drawings and documentation included in this application for more detail.
- 3.8 Drainage and water supply infrastructure included in the GDRS project have been designed by DLRCC to facilitate future connections to the subject Kilternan Village lands subject to a successful grant of planning for this subject sites proposed development.
- 3.9 A Road & Block levels drawing has been prepared as part of this application and reference should be made to Dwg.No.2014/01 & 02 in this regards. Generally, the proposed road levels and house levels follow the existing contours of the site topography.
- 3.10 Proposed road gradients vary between 1/120 (0.83%) and 1/20 (5.0%) which are in accordance with the DOELG Recommendations for Site Development Works for Housing Areas and the Dept. Of Transport's Design Manual for Urban Roads and Streets (DMURS) documentation.
- 3.11 Private house surface water drainage is limited to 8No.units per pipe run and is to be in accordance with the DOELG Recommendations for Site Development Works for Housing Areas.

- 3.12 Private foul water drainage is to be in accordance with the Irish Water Code of Practice for wastewater Infrastructure 2020 which requires individual house connections to each dwelling.
- 3.13 The site zoning is classified as Zoning Objective NC (Mixed Use/Neighbourhood Centre) along the Enniskerry frontage and as Zoning Objective A (Residential Protect/Improve) on the remainder of the lands.
- 4.0 Existing Drainage & Water Services
- 4.1 Records drawings were obtained from Irish Water(IW)/DLRCC in preparation for this planning application and are included in the appendix of this document.
- 4.2 There are no known public drainage services on the subject lands. There are 2No.derlicit/unused old septic tanks on the site to be removed.
- 4.3 The proposed development will have 2No.surface water and 2No.foul water connection outfall points.
- 4.4 Approximately 9.63 Ha of the proposed developments drained S/W drainage will outfall the attenuated flow into the existing piped infrastructure constructed as part of the existing Rockville development (D17A/0793) to the NE of the subject site. This connection point of the attenuated flow will be downstream of the existing Rockville attenuation system into the existing 300mm S/W pipe. This existing pipe currently outfalls into the Glenamuck Road roadside watercourse. Refer to Dwg.2104/05 for further detail.
- 4.5 Located in the north corner of the subject site (apartment Blocks C & D), approximately 0.29Ha of the proposed developments drained S/W area will outfall the localised attenuated flow into the S/W drainage infrastructure to be provided as part of the GDRS project in Glenamuck road. The S/W drainage connection spur into the GDRS infrastructure has been agreed with the DLRCC GDRS project office and is incorporated into that road project. Refer to Dwg.2104/03 for further detail.
- 4.6 The main (324No.units and the NC) proposed foul outfall from of the subject site will be via the existing piped foul drainage system constructed as part of the Rockville schemes (D17A/0793 and D18A/0566). This existing infrastructure in turn outfalls downstream into the existing Irish Water owned 300mm foul drainage piped infrastructure on Glenamuck Road. Refer to Dwg.2104/07 for further detail. As this connection portion of the existing foul sewer is not yet in the charge of

Irish Water, a letter of consent for the connection has been provided and is included in the appendix of this report.

- 4.7 Located in the north corner of the subject site, 59No.units (apartment Blocks C & D) of the proposed development will outfall the localised foul flow into the foul drainage infrastructure to be provided as part of the GDRS project in Glenamuck Road. The foul drainage connection spur from the GDRS infrastructure has been agreed with the DLRCC GDRS project office and is incorporated into that road project. Connection into the spur is subject to a successful planning permission and has been agreed with Irish Water. Refer to Dwg.2104/07 for further detail.
- 4.8 The proposed developments potable drinking water supply connections will be into the existing 300mm Irish Water watermain in Enniskerry Road fronting the site and the existing 250mm watermain in the Glenamuck Road as requested by Irish Water. Refer to Dwg.2104/09 & 10 for further detail.
- 5.0 Key Design Reference Documents
- 5.1 As part of the design of the storm water network and SuDS components, the following documentation were the principal references;
 - Dun Laoghaire Rathdown County Development Plan 2022 2028
 - Kilternan/Glenamuck Local Area Plan 2013
 - CIRIA Report c753 "The SuDS Manual" 2015
 - Greater Dublin Strategic Drainage Study (GDSDS) 2005
 - DLRCC Stormwater management Policy
 - The Greater Dublin Regional Code of Practice for Drainage Works
 - DOELG Recommendations for Site Development Works for Housing Areas.
 - DLRCC Drainage Records maps
 - Available OPW flood maps and reports (from *floodmaps.ie*)
 - DLRCC Carrickmines/Shanganagh River Catchment Study
 - OPW Eastern CFRAM study
 - OPW PFRM mapping
 - Geological Survey of Ireland (GSI) website
 - Teagasc soils data sets
 - Ordnance Survey mapping
 - Topographical survey
 - Site Investigation reports
 - Site walkover visits
 - Discussions with DLRCC Drainage Department

6.0 STORMWATER IMPACT ASSESSMENT

6.1 The design of the storm water network has been carried out in accordance with and in conjunction with the requirements of Dun Laoghaire Rathdown County Councils Drainage Department as were ascertained in meetings, phone calls and email communications as part of the pre-planning process. During the Pre-App Stage 2 process, a full set of RMA documentation and drawings were submitted to the Drainage Department of DLRCC for their review. The Stage 2 pre-application review carried out by the DLRCC Drainage Department noted their observations as published in Appendix B (dated 07/12/21) of the DLRCC "Report of Chief Executive Strategic Housing Development" submission to An Bord Pleanala. The following is a summary of the observations and response to same;

Drainage Planning Report

Surface Water Drainage

1 .There are significant areas of the site that do not undergo any level of interception/treatment via SuDS measures at source. There is an overreliance on gullies, pipes and cellular storage. Given the size of this site, there is ample opportunity to provide soft SuDS measures. The applicant should note that over-provision in one location does not compensate for under provision elsewhere and that attenuation systems and bypass interceptors are not considered SuDS features. The applicant is requested to revisit their SuDS proposals and maximise the use of SuDS across the site, utilising the existing vegetated areas in their design and incorporating more significant SuDS features than those currently proposed. The applicant must show the options being proposed for interception and treatment with contributing areas on a drawing together with the accompanying text and tabular submission to demonstrate that the <u>entire</u> site is in compliance with GDSDS requirements.

Applicants Response

The quantity of the SuDS elements have been increased significantly and are highlighted on Dwg.No.2104/14 included in the submission. In summary there are 41No.tree pit elements, 29No.swales, 4No.bio-retention areas, 2,703m² of Extensive Green Roof, 2,849m² of Intensive Green Roof, c.1,136m of filter drains,c.10,900m² of permeable paving and 172No.200l rainwater butts. Sections/Details of these SuDS elements are illustrated on Dwg.2104/14 and the design of same is included in the appendix of this report. Interception volumes greater than that required in accordance with the GDSDS have been achieved and are identified/summarised on

Dwg.No.2104/13. Interception to the overall drained area catchment and sub-catchment areas are identified on that drawing and typical calculations for same are included in the appendix of this report.

2. It should be noted that Microdrainage has default Cv values of 0.84 for Winter and 0.75 for Summer. These should be amended to a value of 1.0, particularly where applicants are proposing reduced PIMP (%) values. Maintaining the default Cv values reduces run-off in simulations of rainfall events, giving inaccurate simulation results which may lead to under sizing of the drainage system and attenuation storage. The applicant is requested to resub it their Microdrainage results with Cv values set to 1.0. The applicant shall confirm the suitability of the proposed reduced run-off rates (PIMP values) and SAAR prior to submission. The applicant shall also identify in the Microdrainage report where the outflow values from upstream catchments input into the downstream attenuation storage volume calculations.

Applicants Response

The Cv values are set to 1.0 in Microdrainage and are visible in the calculations included in the appendix of this report, as per below;

Roger Mullarkey & Associates		Page 33
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Micro
Date 14/06/2022 18:25		
File Kilternan Planning May 22.MDX	Diamage	
Innovyze	Network 2020.1.3	
100 year Return Period Summary of Areal Reduction F Hot Start (Hot Start Level Manhole Headloss Coeff (G1 Foul Sewage per bectare	of Critical Results by Maximum Level (R <u>Simulation Criteria</u> actor 1.000 Additional Flow - % of Total Flow mins) 0 MADD Factor * 10m ³ /ha Storay (mm) 0 Inlet Coefficient obal) 0.500 Flow per Person per Day (1/per/day (1/a) 0.000	ank 1) for Storm ow 0.000 ge 2.000 nt 0.800 y) 0.000
Number of Input Hydrographs 0 Number of Online Controls 6 Nu Rainfall Model Region Scotlan	Number of Offline Controls 0 Number of Time/A mber of Storage Structures 6 Number of Real T <u>Synthetic Rainfall Details</u> FSR M5-60 (mm) 18.000 Cv (Summer) 1 d and Ireland Ratio R 0.271 Cv (Winter) 1	rea Diagrams 0 ime Controls 0 .000 .000
		-
. The applicant is requested interception/treatment should discharge to attenuation sys provided prior to the attenuat	to confirm if bypass separator, d be provided via SuDS across tems. If they are deemed necessa ion system.	s are required, the site prior ary, they should

Applicants Response

Notwithstanding the inclusion of the substantial quantity of the SuDS features in the design (Section 7 of this report), it is considered infeasible to capture 100% of every surface runoff prior to entering the final attenuation system on the site. Consequently, it is proposed to include a bypass separator upstream of SMh25 & SMh87 as a prudent measure to capture any possible deleterious elements prior to outfall from the site. This is a somewhat conservative effort and is the interests of safe best practice.

4. The applicant is dependant on a lengthy connection through third party lands to connect their outfall to the watercourse. The applicant will need to prove that this connection is technically feasible. The applicant will also be required to submit a draft wayleave agreement in favour of Dun Laoghaire-Rathdown County Council for any section of the proposed public surface water infrastructure that is to be located in lands not to be taken in charge or not in the applicants' ownership. Any such proposed wayleave agreement should be accompanied by a supporting drawing showing the dimensioned route of the sewer, which shall not be less than 6.0m in width.

Applicants Response

The main S/W outfall route proposed to the NE of the site is 216m long containing 6No. offsite manholes and is detailed on dwg.2104/05. Longitudinal sections of same are shown on Dwg.2104/23 with gradients ranging between 1/20 - 1/60. There will be a limited attenuated flowrate of 42.4l/s into this 300mm diameter outfall pipe. Standard hydraulic tables note the capacity of a 300mm diameter pipe to be c.150l/s at a gradient of 1/60 and therefore the limited maximum flowrate of 42.4l/s is less than 30% of the pipe capacity. Approximately 203m (or 94%) of this S/W outfall pipe is contained within lands in the ownership of the applicant and c.13m (c.6%) and 1No.Mh are in lands outside the applicant's ownership. Letters of consent/wayleave from the current owner of the land in which the 13m section of pipe is to be laid are included in the appendix of this report.

The existing 300mm diameter pipe is the main S/W outfall for the existing and permitted Rockville schemes. The capacity of this existing 300mm diameter pipe is primarily governed by the gradient at which it is laid and it can be seen from the as-constructed level survey (refer to Dwg.2104/05) that the existing pipe gradients are generally 1/40 and 1/60 but with one portion near the end of the pipe into the public road (Glenamuck Rd.) at a gradient of 1/300.The capacity of the pipe @ 1/60 gradient is c.150l/s and @ 1/300 is c.60l/s.

This existing 300mm diameter S/W outfall pipe from Rockville Ph1 currently drains the already attenuated flows from the substantially completed Rockville 1 & Rockville 2 (Reg.Ref. D18A/0566) projects at a total restricted flowrate of c.4.5 l/s. There is also a permitted Rockville apartment development (Reg.Ref.D20A/0015), which is in the ownership of the Applicant, yet to be commenced that has an additional attenuated flowrate of c.2.5 l/s to be drained into the existing 300mm pipe. Therefore, there is an already allowed maximum c.7l/s flowrate into this existing 300mm outfall pipe.

Upon completion of all development serviced by this pipe, the maximum possible flowrate from the Kilternan Village site plus the existing /permitted Rockville sites will be 42.4+7= 49.4l/s which is less than the localised c.60l/s capacity.

It is important to note that this existing 300mm S/W pipe flows through open parkland that is to become part of the approved DLRCC *Glenamuck Park* Part 8 scheme which incorporates the GLDR/GDRS regional attenuation pond and does include the diverting of the existing S/W pipe into that pond as part of that project. This will remove both the 1/60 and the 1/300 gradient sections of the existing pipe therefore leaving the existing 1/40 gradient as the predominant capacity governor. Using standard hydraulic tables, a 300mm diameter S/W pipe at a gradient 1/40 has a capacity of c.180l/s which is far greater than the 49.4l/s maximum possible flow coming from all the upstream fully developed sites, including the subject application lands.

For clarity the applicant has full rights of access over/under this strip of land and can confirm that should a planning permission be granted the Applicant has the ability to deliver the services and ancillary works required to implement the designed scheme in full. Letters of consent relating to connection to services and crossing lands not in the Applicants ownership are included in the Appendix 12.15 of this report.

5. The applicant is requested to submit the complete Site Investigation Report and results, including Infiltration tests, and a plan showing the trial pits/soakaway test locations across the site. The report should address instances where ground water, if any, were encountered during testing and its impact.

Applicants Response

SI reports are included in the appendix of this report and include locations of the trial pits/soakaway testing. No ground water above c.2.5m was encountered during the testing which was carried out in different time periods.

6. As standard, the applicant is requested to provide details of maintenance access to the green roofs and should note that, it the absence of a stairwell type access to the roof, provision should be made for alternative maintenance and access arrangements such as external mobile access that will be centrally managed. A detailed cross section of the proposed build-up of the green roof should be provided, including dimensions. The applicant should comment on the compatibility of the green roof with PV panels if they are to be incorporated into the design.

Applicants response

Access for maintenance of the green roofs will be via the internal building stairwells and a roof hatch over. Detailed cross sections of the proposed roof build-up are included in the main body and the appendix of this report as well as shown on Dwg.No.2104/14 included in the submission. PV panels do not form part of this application.

7. As standard, the applicant is requested to provide a penstock in each flow control device chamber.

Applicants Response

A penstock is provided in each flow control device chamber as detailed on Dwg.No.'s 2104/14 & 20.

8. As standard, the applicant is requested to submit supporting standard details including cross-sections and long-sections, and commentary that demonstrates that all proposed SuDS measures have been designed in accordance with the recommendations of CIRIA 753 (The SuDS manual), specifically Section 36 regarding Health and Safety.

Applicants Response

A full suite of sections/details of the SuDS components in accordance with the SuDS manual are included in the man body of this report and on Dwg.2104/14. Calculations for same are included in Appendix 12.3 of this report. Longitudinal sections of the S/W infrastructure are shown on Dwg.No.'s 2104/23-26.

9. If the applicant proposes SuDS measures that incorporate the use of infiltration, the applicant is requested to provide details of each SuDS measure and confirm weather it will be lined/tanked or not. If lined/tanked systems are to be used, the applicant will be requested to explain the rationale behind this. If unlined systems are to be used then the applicant is requested to demonstrate on a drawing that all infiltration SuDS proposals, including the attenuation systems have a 5m separation distance from building foundations and 3m separation from site boundaries.

Applicants Response

The SuDS measures proposed do not rely on infiltration due to the unsuitable infiltration results obtained from the soakaway tests. Separation above noted separations distances of 3 and 5m respectively are achieved and are demonstrated on Dwg.No.'s 2104/03 & 04.

10. As standard, the applicant is requested to confirm that a utilities clash check has been carried out ensuring all utilities' vertical and horizontal separation distances can be provided throughout the scheme. The applicant should demonstrate this with cross-sections at critical locations such as junctions, site thresholds and connection points to public utilities. Minimum separation distances shall be in accordance with applicable Code of Practice.

Applicants Response

Cross sections of the proposed utilities are shown on Dwg.No.2104/16 & 17 and crossing separation distances have been achieved as demonstrated on Dwg.No.'s 2104/23-30 inclusive.

11. A Stormwater Audit will be requested for this application. In accordance with the Stormwater Audit policy, the audit shall be forwarded to DLRCC prior to lodging the planning application. All recommendations shall be complied with, unless agreed in writing otherwise with DLRCC.

Applicants Response

In advance of submission of the main planning application and in accordance with the requirements of the Stormwater Management Policy of the DLRCC County Development Plan 2022-2028, a Stormwater Audit has been carried out by Punch Consulting Engineers for the proposed development, was submitted to DLRCC Drainage Department and is included in Appendix 12.6 of this report.

Site Specific Flood Risk Assessment

1. The applicant has submitted a drawing identifying overland flow routes both within and without the site. The applicant is requested to provide further detail on this drawing of any drop kerbs/ramps/boundary treatments required at significant locations and should detail how properties, both within the development and on adjacent lands, will be protected in the event of excessive overland flows.

Applicants Response

Details relating to excessive overland flows are shown on drawing No.2104/12 including details of dropped kerbs as requested. All house floor levels on the site are greater than 500mm above the top water flood levels for the 100 year plus 20% climate event in compliance with the GDSDS.

- 6.2 The existing site topography generally slopes from the Southwest towards the Northeast. That is, the ground falls away from the Enniskerry Road towards the Glenamuck Road South. There is an existing open roadside ditch along the northern edge of Glenamuck Road.
- 6.3 There is a drop in level across the land by c.10.2m from the highest point on the site (143.07mOD) to the lowest (c.132.85mOD).
- 6.4 The general topography outside the application site and the surrounding lands is downwards towards the Glenamuck Road and the adjacent roadside ditch.
- 6.5 Replicating the natural characteristics and providing amenity/biodiversity has been achieved in the SuDS elements included in this application. A full SuDS treatment train approach has been implemented in accordance with the CIRIA SuDS Manual as described in detail in Chapter 7 of this report, summarised as follows;
 - Filter drains to the rear of the housing (c.1,135m)
 - Permeable paving to all parking spaces (c.10,900m²)
 - Rainwater butts (200l) to the rear downpipes (172No.)
 - Swales adjacent to roadways where practically feasible (29No.)
 - Tree pits where practically feasible (41No.)
 - Extensive Green Roof (2,703m²)

- Intensive Green Roof (2,849m²)
- Bio-Retention area (4No.)
- Silt-trap/catchpit manholes (6No.)
- Hydrobrakes limiting flow to the drained area Qbar greenfield rate
- Petrol interceptor upstream of SMh25 & Smh87
- Stone lined voided arch retention storage devices
- 6.6 Due to the site topography on the site there are 2No.seperate surface water outfalls proposed for the development, namely 1 and 2. Outfall 1 flows into the existing piped infrastructure constructed as part of the recent Rockville development (D17A/0793) to the NE of the subject site. Outfall 2 (Phase 3 of the proposed development) is located in the north corner of the subject site towards the Glenamuck Road into the S/W drainage infrastructure to be provided as part of the GDRS project in Glenamuck Road. Subject to a successful planning application, the S/W drainage connection spur into the GDRS infrastructure has been agreed with the DLRCC GDRS project office and is incorporated into that road project.
- 6.7 The Outfall 1 pipe will pass through the adjacent lands to the northeast, the vast majority of which (203m of 216m) is in the ownership of the applicant. The final 13m of Outfall 1 lies outside the applicants ownership but consent from the current landowner has been obtained and letters of consent to connect into the infrastructure and cross over the lands are included in Appendix 12.15 of this report. For clarity the Applicant has full rights of access over/under this strip of land and can confirm that should a planning permission be granted the Applicant has the ability to deliver the services and ancillary works required to implement the designed scheme in full. Letters of consent relating to connection to services and crossing these lands are included in the Appendix 12.15 of this report.
- 6.8 This connection point of the attenuated flow will be downstream of the existing Rockville attenuation system into the existing 300mm S/W pipe. This existing pipe currently outfalls into the Glenamuck Road roadside watercourse and is to be diverted into the regional attenuation pond located beside the Glenamuck Road/GDRS junction as part of the DLRCC GLDR/GDRS roads project and will in effect be in the ownership of DLRCC. Refer to Dwg.2104/05 for layout of the 300mm Outfall 1 pipe and longitudinal sections of same on Dwg.2104/23 for further detail.

- 6.9 Outfall 1 caters for the vast majority, 9.63Ha of the total 9.92Ha of the developments drained area, while Outfall 2 caters for 0.29Ha of the drained area.
- 6.10 There have been pre-planning consultations with DLRCC in relation to the GDRS project as well as meetings/discussions with the GRDS consultant engineers (DBFL) to discuss any interface between the roads project and this subject application, with specific attention to drainage services and access arrangements.
- 6.11 It was confirmed by DLRCC consultants that GDRS infrastructure has been designed to cater for the attenuated run-off from the Kilternan Village lands and that the regional pond in that project has capacity to intercept and store the S/W outfall from the subject site. All drainage connections to the upcoming GDRS project are subject to a successful grant of this subject planning application.
- 6.12 Correspondence relating to the above interface is included in Appendix 12.17 of this report.
- 6.13 The surface water drainage design has been carried out in accordance with the Greater Dublin Regional Code of Practice, the GDSDS and the CIRIA Report c753 "The SuDS Manual" 2015. A SuDS treatment train and attenuation are included in the design. A Stage 1 SuDS audit has been completed by Punch Consulting Engineers and submitted to DLRCC Drainage Department in accordance with the Stormwater Management Policy. The audit also included the Surface Cover Type table from Section 7.1.5 of the DLRCC County Development Plan 2022-2028. Refer to Appendix 12.6 for the SuDS audit report.
- 6.14 As is recommended in the DLRCC Stormwater Management Policy, the HR Wallingford UKSuDS Greenfield runoff rate estimation tool was used to calculate the Qbar for the site. The overall S/W outfall rate from the proposed development has been calculated using the <u>drained</u> site area of 9.92Ha (<u>not</u> the application "*redline*" area). **Qbar** was determined to be = **44.2I/s** . The HR Wallingford Qbar calculations are included in Appendix 12.5 of this report. The soil type used in the calculation has been determined to be Type 3 as is discussed in detail in Chapter 8 of this report. Refer to Appendix 12.5 for a copy of the Qbar calculation. Refer also to Dwg.2104/13 for a summary of the catchment and drained paved areas.
- 6.15 The surface water drainage infrastructure for the development will collect the rainfall on the site and convey the storm water run-off via roadside swales, rear garden filter drains, tree pits, bio retention areas, gullies, underground pipes, manholes, silt -traps and direct the flows via void arched attenuation systems and a petrol interceptor towards vortex flow restricting devices, Hydrobrake or similar.

6.16 As outlined above, the S/W infrastructure has been divided into 2 catchment areas, namely 1 & 2. Catchment 1 is large (c.9.63Ha drained area) draining to Outfall 1 and Catchment 2 is small (c.0.29Ha drained area) draining to Outfall 2. Refer to Dwg.No.2104/13 for further detail and to Fig.3 below for an extract of same;

- Fig.3 Catchment Locations ex.Dwg.2104/13
- 6.17 The larger Catchment 1 contains 5No.sub-catchments (A/B/C/D/E) each with an attenuation tank that connect in series, each of which has the flowrates restricted as shown in Table 2 before discharging to Outfall 1

in Rockville. The smaller Catchment 2 contains 1No.privately maintained attenuation tank upstream of outfalling into the Glenamuck Road upgraded S/W system as part of the GDRS project. The total site Qbar is divided between the 2No. site outfalls as per Table 1 below. The attenuated outfall rates from the sub-catchments A to E are divided to suit the drainage design and available space for attenuation tanks and separate the larger Catchment 1 into manageable interception zones.

CATCHMENT 1 & 2 SUMMARY								
GROSS SITE Catchment DRAINED Outfall rate								
	AREA (Ha)	No.	AREA (Ha)	Applied (l/s)				
	10.8	1	9.63	42.4				
		2	0.29	1.8				
TOTALS	10.8 Ha		9.92 Ha	44.2 l/s				

Table 1 - Catchment Summary

SUB-CATCHMENTS OF 1							
Sub- Catchment	DRAINED AREA (Ha)	Outfall rate Applied (l/s)					
Main Outfall	4.20	42.4					
Α							
В	2.16	3					
C	2.07	19					
D	0.80	4					
E	0.4	2					
TOTALS	9.63						

Table 2 - Sub-Catchments Summary

6.18 Catchment 1 has 5No. attenuation tanks in total arranged as follows;

Tanks 4 & 3 are connected in series and in turn drain down to the main tank No.1.

Tanks 5 & 2 are connected in series and in turn drain down to the main tank No.1.

Attenuated flow from Tank 1 drains through the applicants lands and then outfalls into the into the existing Rockville Ph1 (Reg.Ref.D17A/0793) 300mm diameter outfall pipe across parkland. Noting that the existing S/W pipe is to be diverted into the regional

attenuation pond as part of the GRDS project. This area is under the approved DLRCC Part 8 scheme known as as *Glenamuck Park*.

- 6.19 The outfall pipe from Catchment 1 proposed to the Northeast of the site is 216m long containing 6No. offsite manholes and is detailed on Dwg.2104/05. Longitudinal sections of same are shown on Dwg.2104/23 with gradients ranging between 1/20 - 1/60. There will be a limited attenuated flowrate of 42.4l/s into this 300mm diameter outfall pipe. Standard hydraulic tables note the capacity of a 300mm diameter pipe to be c.150l/s at a gradient of 1/60 and therefore the limited maximum flowrate of 42.4l/s is less than 30% of the pipe capacity.
- 6.20 Approximately 203m (or 94%) of this S/W outfall pipe is contained within lands in the ownership of the applicant and c.13m (c.6%) and 1No.Mh are in lands outside the applicants ownership. A wayleave agreement is in place between the Applicant and the current owner of the land in which the 13m section of pipe is to be laid and copies of the letters of consent are included in the appendix of this report. It is important to note that this existing 300mm S/W pipe flows through open parkland that is to become part of the approved DLRCC Part 8 *Glenamuck Park* and the GLDR/GDRS open space, will be in the ownership of DLRCC, and is to be diverted into the regional attenuation pond as part of that project. Discussions with DLRCC's consultant engineers for the GDRS have confirmed that capacity to drain the Kilternan Village lands have been included in regional ponds.
- 6.21 This existing 300mm diameter S/W outfall pipe from Rockville Ph1 currently drains the already attenuated flows from the substantially completed Rockville 1 & Rockville 2 (Reg.Ref. D18A/0566) projects at a total restricted flowrate of c.4.5 l/s. There is also a permitted Rockville apartment development (Reg.Ref.D20A/0015 in the ownership of the Applicant) yet to be commenced that has will have additional attenuated flowrate of c.2.5 l/s to be drained into the existing 300mm pipe. Therefore, there is an already allowed maximum c.7l/s flowrate into this existing 300mm outfall pipe.
- 6.22 The proposed Kilternan Village Catchment 1 maximum outfall is proposed at 42.4 l/s. Upon completion of all development serviced by the existing Rockville 300mm pipe, the maximum possible flowrate from the Kilternan Village site plus the existing /permitted Rockville sites will be 42.4+7= 49.4l/s.
- 6.23 The capacity of the existing Rockville outfall 300mm diameter pipe is primarily governed by the gradient at which it is laid and it can be seen from the as-constructed level survey (refer to Dwg.2104/05) that the existing pipe gradients are generally 1/40 and 1/60 but with one portion near the end of the pipe into the public road (Glenamuck Rd.) at a

gradient of 1/300. The capacity of the pipe @ 1/60 gradient is c. 150 l/s and @ 1/300 is c. 60 l/s.

- 6.24 Therefore, the maximum flowrate from the Kilternan Village site and the existing/permitted Rockville sites of 49.4l/s is less than the localised c.60l/s capacity.
- 6.25 It is relevant to note that this existing 300mm S/W pipe flows through open parkland that is to become part of the GLDR/GDRS open space (DLRCC *Glenamuck Park* Part 8), in the ownership of DLRCC, and is to be diverted into the regional attenuation pond as part of that project. This will remove both the 1/60 and the 1/300 gradient sections of the existing pipe therefore leaving the existing 1/40 gradient as the predominant capacity governor. Using standard hydraulic tables, a 300mm diameter S/W pipe at a gradient 1/40 has a capacity of c.180l/s which is far greater than the 49.4l/s maximum possible flow coming from all the upstream fully developed sites, including the subject application lands.
- 6.26 Catchment 2 for the proposed Kilternan Village site has a drained area of 0.29Ha and is contained within the apartment Blocks C & D bounding onto the Glenamuck Road to the north of the proposed development. Flowrate from this catchment is to be attenuated and outfall into the new S/W infrastructure to be constructed as part of the GDRS. A spur connection from the GDRS S/W drainage is to be provided by DLRCC to facilitate Phase 3 of this application of these Kilternan Village lands and connection into same is subject to a successful planning permission. Refer to Appendix 12.15 for letters of consent relating to lands not in the Applicants ownership.
- 6.27 Correspondence relating to the above interface is included in Appendix 12.17 of this report.
- 6.28 The proposed development is to be phased as 1, 2, 2A, 3, 4 & 5. The extent of each phase and the main water/drainage infrastructure associated with each phase is identified on Dwg.No.2104/18. All main drainage/water services necessary to serve each phase are to be completed in full in each area from the head of the system to outfall.
- 6.29 The SuDS management train approach to designing the storm water network has been applied for this development and is specifically discussed in Chapter 7.
- 6.30 Downstream of the SuDS elements, the retained storm water flows will be stored in a combination of an underground systems, such as the StormTech MC4500 system. As part of the pre-planning process, these proposals have been discussed and submitted to DLRCC Drainage

Department and have been agreed with in principle. Refer to Dwg.No.'s 2104/14 & 15 for SuDS and attenuation Storage details.

- 6.31 The MicroDrainage software was used to generate drainage simulation models for storm events for 1 year, 30 year and 100 year return events over multiple time periods. In accordance with the DLRCC Stormwater management Policy, an allowance for an increased rainfall due to climate change of 20% was applied in the drainage design model. Furthermore, the Cv values are set to 1.0 in Microdrainage software model and are visible in the calculations included in Appendix 12.1 of this report.
- 6.32 As part of the assessment for blockages in the system, the MicroDrainage design model was run on the basis that there was a near 100% blockage of the outfall vortex control devices for a 30 minute period. Therefore, the model was run with a reduction in the outfall rates from each of the 6No. Hydrobrakes down to 0.1 l/s for a 30min duration in the Q100 + 20% event. These resulting volumes and top water level are contained beneath the ground level and no flooding was noted. Refer to Appendix 12.1 for these calculation results.
- 6.33 As noted in the DLRCC Stormwater Management Policy document, an allowance for 10% Urban Creep is required in the drainage calculations. This allowance has been applied in the model by increasing the drained paved area to the rear of the houses by more than 20% of the roof area draining to the rear of the houses. This additional area has been applied across all houses in the scheme to take account for possible house extensions in the future. Refer to Dwg.No.2104/13 for details of same.
- 6.34 In accordance with the Greater Dublin Regional Code of Practice for Drainage Works (GDSDS) and in consultation with DLRCC drainage Department and in accordance with the DLRCC Stormwater Management Policy, the surface water drainage infrastructure was designed to the parameters as outlined in Table 3 below;

Time of entry	4mins
Return periods for pipework	2 years- no surcharge
	Q30 15min no flooding
	Q100 15min - storage in designated areas only
Climate Change	20%
Allowance for Urban Creep	10%
Min.velocity	0.75m/s
Max.velocity	3m/s
Min.sewer size for TIC	225mm diameter
Pipe friction (Ks)	0.6mm
Minimum pipe depth	1.2m below roads
	0.9m in open/grassed spaces
Standard Annual Average	1003mm (Met Eireann data)
Rainfall (SAAR)	
M5-60	18mm
Ratio r (M5-60/M5-2Day)	0.2/1
SPR Value	0.37
Total Site Outfall Rate	Qbar = 44.2 I/s (based on HR Wallingford Qbar - refer
	Chapter 8) and split between Outfall $1 = 42.4 \text{ l/s}$ & Outfall $2 = 4.9 \text{ l/s}$
Attom of an atom and	1.8 l/S
Attenuation storage	Q30 - no flooding on site
	0100 flooding on site 500mm freeboard to FELs of bouses
	flood routing plan
Paved Area Runoff percentage	100% from roofs to drains
ravea Area Nanojj percentage	
	95% from roads and paths not drained to SuDS features
	92% from Extensive Green Roofs
	85% from Intensive Green roofs
	71% from roads and paths drained to SuDS filter swales
	70% which are the second
	70% root runott and private path drained via rear garden filter
	ui ailis
	60% parking permeable paying areas and locally drained paths
	oom parking permeasice paying areas and locally drained paths
	37% grassland
	or // Braddand

Table 3 - S/W Design Parameters

6.35 In accordance with best practice, the internal drainage system has been designed as a completely separate foul and surface water system.

6.36 The freeboard between each separate storage tank top water level (TWL) and the lowest level house floor slab draining to that tank is greater than the GDSDS minimum of 0.5m. A summary of the freeboards is given in Table 4 below;

FREEBOARD SUMMARY									
Tank No.	TWL (mOD)	FFL (mOD)	Freeboard (m)	Pass/Fail					
	422.44	424.25		DAGG					
1	133.44	134.25	0.81	PASS					
2	136.47	139.35	2.88	PASS					
3	140.48	142.25	1.77	PASS					
4	141.60	142.45	0.85	PASS					
5	141.06	141.75	0.69	PASS					
6	133.13	136.00	2.87	PASS					

Table 4 - Freeboard Summary

- 6.37 In accordance with the GDSDS, the four principal design criteria as set out in section 6.3.4 of Volume 2 are summarized as follows;
 - Criterion 1 River water quality protection
 - **Criterion 2** River regime protection
 - Criterion 3 Level of service (flooding) for the site
 - **Criterion 4** River Flood protection
- 6.38 **Criterion 1** has been complied with by inclusion of **Interception** of at least 5mm of rainfall to prevent runoff to the receiving water. Interception has been calculated for each sub-catchment A-E of Catchment 1 as well as Catchment 2. As per the GDSDS guidelines, the interception is to capture the first 5mm of rainfall from 80% of Paved Drained Area.
- 6.39 Interception will achieved be within the voids of the stone base of the permeable paving, in the stone below the filter drain pipework, in the tree pits, swales, bio-retention areas, in the green roof systems and in the stone base of the attenuation storage. As per the parameters laid out in the GDSDS the interception volume was calculated and is summarised in the following tables 5 & 6. Refer to Appendix 12.2 for detailed calculations.

INTERCEPTION SUMMARY TABLE*															
MAIN CATCHMENT	MAIN CATCHMENT SUB-CATCHMENT DRAINED PAV		DRAINED PAVED		ONE BELOW SuDS E	ELEMENT (m ³)	TREE PITS (m ³) SW	TREE PITS (m ³) SWALES (m ³)	BIO-RETENTION	GREEN ROOF (m ³)		Rainwater Butts (2001)	SUB-CATCHMENT INTERCEPTION	SUB-CATCHMENT INTERCEPTION	PASS/FAIL
REFERENCE	REFERENCE	AKEA (Ha)	*Area x 0.8 x 5mm	TANK	PERMEABLE PAVING	FILTER DRAINS			(m)	EXTENSIVE	INTENSIVE	(m3)	PROVIDED (m ³)	REQUIRED (m ³)	
	A	2.92	116.80	180.00	127.13	30.96	12.50	7.43	0.00	0.00	0.00	12.20	370.2	116.80	PASS
	В	1.57	62.64	135.00	105.57	30.02	17.50	2.11	0.00	0.00	0.00	12.60	302.8	62.64	PASS
1	С	1.84	73.48	69.84	178.83	6.62	15.00	1.38	5.00	43.90	97.30	5.00	422.9	73.48	PASS
	D	0.69	27.52	45.00	30.38	14.18	5.00	0.51	0.00	0.00	0.00	4.20	99.3	27.52	PASS
	E	0.37	14.80	11.52	48.60	0.00	1.25	0.76	0.00	0.00	46.48	0.40	109.0	14.80	PASS
2		0.21	8.52	14.04	0.00	0.00	0.00	0.51	0.00	31.78	55.65	0.00	102.0	8.52	PASS

Table 5 - Sub-Catchment Interception Summary

INTE	INTERCEPTION SUMMARY							
MAIN CATCHMENT REFERENCE	REQUIRED	PROVIDED						
1	295	1,304						
2	9	102						
TOTAL	304	1,406						

 Table 6 - Main Catchment Interception Summary

- 6.40 **Criterion 2** is complied with in applying the total Qbar outfall rate of 44.2 l /s and providing more than the required volume of attenuation storage (Q100+20% = $3,973m^3$) in the MC4500 StormTech systems.
- 6.41 **Criterion 3** is satisfied with as each of the 4No.sub-criterion design objectives have been met as per Table 7 the below;

Sub-	Design objective	Satisfied				
criterion						
3.1	No flooding on site for the Q30 except where specifically planned	ОК				
3.2	No internal property flooding for site critical duration storm event.	ОК				
3.3	No internal property flooding satisfied as 500mm freeboard to house FFL's is achieved.	ОК				
3.4	No flooding of adjacent areas unless specific routing planned for the Q100 + 20% climate change	OK				
Refer to the MicroDrainage surface water model results (Q1-Q100+20%) included in the appendix of this report for further detail						

Table 7 - Sub-criterion

6.42 **Criterion 4** River flood protection is satisfied under sub-criterion 4.3 in accordance with the application of the maximum Qbar (44.2 l/s) and therefore long-term storage is not required.

- 6.43 An exceedance flow routing plan can be viewed on Dwg.No.2104/12 included with this submission.
- 6.44 Based on the drained area Qbar and the paved area factors identified in Table 3 above and using the MicroDrainage software, a drainage model was generated for multiple storm events and return periods of 2, 30 and 100 years were simulated. The attenuated storage provided is a combination of the interception volume provided below each tank plus the tank volume itself. Full model simulation results for the network and storage units are included in Appendix 12.1 of this report but are summarised in Table 8 below;

ATTENUATION STORAGE SUMMARY								
	Flow control limit (l/s)	Volume (n	Required າ ³)	Volume Provi Wate	Provided (m ³) and Top Water Level			
		Cat	chment 1					
Q30 Q100 Tank Storage TWL +20% Volume CC Provided (m ³)								
Tank 1 (Outfall)	42.4	1,263 1,629		1638	133.45mOD			
Tank 2	3.0	878	1,110	1122	136.49mOD			
Tank 3	19.0	444	591	611	140.53mOD			
Tank 4	4.0	308	399	406	141.60mOD			
Tank 5	2.0	88	116	118	141.06mOD			
		Cat	chment 2					
Tank 6 (Outfall)	1.8	97	127	129	133.15mOD			
TotalMax.Storage	Required	3,078m ³	3,972m ³					
Total Storage	PROVIDE	4,024m ³						
The total storage	e provided	> require	d					

 Table 8 - Storage Volume Summary

- 6.45 It is noted that there is additional **interception storage** volume of c.1,406-304= **1,102m**³ (refer to Table 6 above) that has not been subtracted from the required attenuation volume nor has it been added to the available storage volume and is therefore considered to be a safer and more conservative approach to attenuation storage estimation.
- 6.46 Refer to Dwg.No.'s 2104/03 & 04 for layout of the attenuation systems and to Dwg.No.2104/15 for details of same.

- 6.47 In accordance with the requirements of the DLRCC Stormwater Management Policy, a Stage 1 SuDS audit has been completed by Punch Consulting Engineers and submitted to DLRCC Drainage Department. The audit also included the Surface Cover Type table from Section 7.1.5 of the DLRCC County Development Plan 2022-2028. Refer to Appendix 12.6 for details of the SuDS audit.
- 6.48 A Hydrological and Hydrological Risk Assessment report prepared by Enviroguide Consulting has been completed and is included with the planning application refer to that report for further detail.

7.0 Sustainable Drainage Systems - SuDS

- 7.0.1 SuDS addresses the water quality, water quantity, amenity, and biodiversity by the management of surface water run off in a sequence of treatment processes along the drainage infrastructure network.
- 7.0.2 The SuDS philosophy is illustrated in the GDSDS Volume 3 Section 6.3 as the "SuDS triangle", shown below. The principle is to reduce the storm water run-off through managed processes, improve the quality of the run-off and to replicate the natural characteristics of the rainfall run off.

Fig.4 - The SuDS Triangle

- 7.0.3 Replicating the natural characteristics and providing amenity/biodiversity has been achieved in the SuDS elements included in this application. A full SuDS treatment train approach has been implemented in accordance with the CIRIA SuDS Manual, summarised as follows;
 - Filter drains to the rear of the housing (c.1,135m)
 - Permeable paving to all parking spaces (c.10,900m²)
 - Rainwater butts (200l) to the rear downpipes (172No.)
 - Swales adjacent to roadways where practically feasible (29No.)
 - Tree pits where practically feasible (41No.)
 - Extensive Green Roof (2,703m²)
 - Intensive Green Roof (2,849m²)
 - Bio-Retention area (4No.)
 - Silt-trap/catchpit manholes (6No.)

- Hydrobrakes limiting flow to the drained area Qbar greenfield rate
- Petrol interceptor upstream of SMh25 & Smh87
- Stone lined voided arch retention storage devices

With the inclusion of these measures, it is proposed that the SuDS treatment of the run-off has been adequately addressed.

7.0.4 The SuDS management train approach to designing the storm water network has been applied in this proposed developments design, similar in principle to Fig.5 below

Fig.5 - Treatment Train

7.1 Source control

- 7.1.1 Source Control aims to detain or infiltrate runoff as close as possible to the point of origin.
- 7.1.2 The site investigation results (see appendix) suggest that there is some, but limited, $(9.32 \times 10^{-6} \text{ m/s})$ scope for infiltration of surface water flows. Even if the infiltration is limited there is still scope to provide some level of storage, time delay and treatment as the surface water flows through the stone medium.
- 7.1.3 It is proposed to use **filter drains** in the rear gardens of the house to cater for run off from the rear roofs and patios. The use of these filter drains will encourage run off to infiltrate directly to ground and will also provide interception storage in the c.40% voids ratio stone below the high-level drain. Any run-off that cannot infiltrate to ground will overflow to the high-level drain and connect to the main drainage

system. The surface water runoff rate is also attenuated using these filter drains. A PAF of 0.70 (70%) will apply to these areas as was agreed in principle with the DLRCC Water Services Department as part of the pre-planning discussions. A silt-trap inspection chamber is included downstream of each filter drain. Refer to Dwg.2104/14 for further detail.

Fig.6 - Filter Drain

- 7.1.4 It is proposed to use **tree pits (41No.)** and a **bio-retention (4No.)** areas where possible to collect run-off from the cambered road surface. The use of these tree pits will provide treatment of the run-off, will encourage run off to infiltrate directly to ground and will also provide interception storage below the high-level connection to the main S/W drainage. Any run-off that cannot infiltrate to ground will overflow to the high-level drain and connect to the main drainage system. The surface water runoff rate is also attenuated using these tree pits.
- 7.1.5 The road cambers roads are to be constructed to drain flow into these tree pits and bio retention areas to maximize the drained area into SuDS treatment & interception. The road cambers are shown on Dwg.No.'s 2104/01 & 02 and further illustrated on Dwg.No.2104/13.

Fig.7 - Tree Pit (ex. SuDS Manual fig.19.3)

Fig.8 - Bio-Retention (ex.Dwg.2104/14)

- 7.1.6 A PAF of 0.71 (71%) will apply to areas or paths/roads draining to these tree pits and bio-retention areas as was agreed in principle with the DLRCC Water Services Department as part of the pre-planning discussions. Refer Dwg.No.'s 2104/03 & 04 for location and to Dwg.No.2104/14 for details.
- 7.1.7 It is proposed to use **permeable paving** surfacing to the private driveways of the houses and in the car parking spaces of the duplex units and the road/paths remaining in control of a management company around/west of the Neighbourhood Centre. This allows for the rainfall to percolate through open joints in the pavement and be strained through the unwoven geo-textile membrane beneath the paved surface. This method of surface water collection will improve water quality and prevent excessive sedimentation. There is a natural interception, attenuation and storage of surface waters flowing through the permeable paving system and an outfall pipe is provided 150mm above

the bottom of the system to drain the overflow filtered/attenuated run off into the main drainage system.

Fig.9 - Permeable Paving

- 7.1.8 In providing permeable paving systems on the site, a run-off rate of 60% (0.60 paved area factor applied) has been applied in the surface water calculations. Refer to Dwg.No.2104/14 for details.
- 7.1.9 In accordance with the CIRIA SuDS Manual 2015, green roofs can be used to treat and attenuate runoff in their substrate and support root uptake of water with appropriate planting and are an integral part of source control on a site. Green roofs can increase the indigenous biodiversity and is an encouraging environmentally design strategy, which is in accordance with the objectives as specified in the Greater Dublin Strategic Drainage Strategy (GDSDS) and in Appendix 7.2 of the DLRCC County Development Plan 2022-2028.

Fig. 10 - Intensive & Extensive Green Roof (ex.Dwg.2104/14)

7.1.10 Both Intensive and extensive Green roofs are proposed to Apartment Block C/D and the Neighbourhood Centre (NC). Duplex Block D1 is to have Intensive Green Roof only. The minimum percentage coverage required in Appendix 7.2 of the DLRCC County Development Plan is 50% if extensive and 70% if intensive. Each green roof proposed passes the DLRCC minimum requirement % and is summarised in Table 9 below; plan.

GREEN ROOF COVERAGE SUMMARY									
BLOCK REFERENCE	Extensive	Intensive	Total	Building Footprint	% Coverage of Green Roof	Min.% Reqd.	Pass/Fail DLRCC Min. %		
NC	1,568	1,390	2958	4,089	72%	60%*	PASS		
Duplex D1		664	664	996	66 %	50%	PASS		
Apt.Block C/D	1,135	795	1,930	2266	85%	60%*	PASS		
*The 60% coverage is an average between the Min.50% if Intensive and 70% if Extensive. Each of the NC and Apt. Blk C/D contain both Intensive & Extensive Green Roofs and therefore the average is taken as the minimum percentage requirement.									

Table 9 - Green Roof Coverage Summary

7.1.11 In providing the green roof system, a run-off rate of 85% (0.85 paved area factor applied) has been applied in the surface water calculations for the intensive Green Roof area and 92% for the Extensive Green Roof

area in accordance with appendix 7.2 Green Roof Policy of the DLRCC County Development Plan 2022-2028.

- 7.1.12 Access for maintenance of the green roofs will be via the internal building stairwells and a roof hatch over or using a cherry picker where stairs access is not feasible. Detailed cross sections of the proposed roof build-up are shown on Dwg.No.2104/14 included in the submission. PV panels to these roofs of the do not form part of this application.
- 7.1.13 The use of **rainwater butts** is another source control method in the SuDS treatment train process. It is proposed to provide c.172No. 2001 rainwater butts to collect rainwater from the house roofs for use as garden irrigation, therefore reducing drinking water demand and decreasing run-off from the site.

Fig 11 - Rainwater Butt

7.1.14 Bypass oil separators are important SuDS devices that significantly reduce any potential hydrocarbons and suspended solids from surface water run-off. and are included upstream of each of the 2No. S/W outfalls from the site. Sizing of the interceptors are based on the Microdrainage calculated flowrates and manufacturers details tables and can be viewed in Appendix 12.6 of this report as part of the SuDS audit procedure.

Fig 12 - Bypass Separator

7.1.15 An important aspect of Source Control is reducing pollution by prevention of chemicals and other pollutants from coming into contact with rainfall runoff. In this respect, it is proposed that the homeowner will be provided with information regarding the appropriate usage of the proposed drainage system.

7.2 Site Control

- 7.2.1 Site control in the treatment train process involves the reduction in volume and rate of surface runoff run off and provide some treatment of the runoff.
- 7.2.2 Roadside filter swales are a method of site control that reduces harmful chemical pollutants and sediment reaching the piped network. These pollutants are trapped in the grassed areas leading to the filter strip. Filter swales reduce the surface water runoff rate and attenuate flows locally, therefore reducing stress on downstream facilities. Filter swales also facilitate interception of the "first flush" of rainfall. Fig.13 below from the CIRIA SuDS Manual illustrates the principle.

Fig. 13 - Filter Swale

- 7.2.3 As part of the site control it is proposed to construct 29 No. filter swales along the site roads at specified locations which will allow surface water runoff from roads to be intercepted and infiltrate to ground. In the event the ground is saturated, there are also positive drainage connections from the filter swales into the piped network. Refer to Dwg.No.'s 2104/03 & 04 for proposed locations of the filter swales and to Dwg.2104/14 for details of this proposal.
- 7.2.4 In providing the filter swales, a run-off rate of 71% (0.71 paved area factor applied) has been applied in the surface water calculations as was agreed in principle with the DLRCC Drainage Department as part of the pre-planning discussions. Typical calculations for these SuDS features are included in Appendix 12.2 of this report.
- 7.2.5 The road cambers roads are to be constructed to drain flow into these filter swales where appropriate to maximize the drained area into SuDS treatment & interception. The road cambers are shown on Dwg.No.'s 2104/01 & 02 and further illustrated on Dwg.No.2104/13.
- 7.2.6 A key landscape/bio-diversity feature of the proposed development is the embankment of existing trees forming the open space to the centre of the site. These trees provide an important role of intercepting rainfall run-off and managing same through evapotranspiration as well as infiltration to roots. The addition of landscaping and planting throughout the development is also an important aspect of site control in providing biodiversity, run-off reduction, interception, infiltration, and amenity. The project Arborist specialist has advised of the critical root zone constraints relating to this tree belt and as a result excavation withing

the to the root zone prohibited. Refer to the landscape architects and arborist drawings/reports for more information. Refer also to the SuDS audit report (Appendix 12.6) relating to an illustration of tree root protection zone.

7.2.7 Silt-trap/catchpit manholes are provided upstream of the underground attenuation storage systems which will remove sediments and silts and forms part of the site control methodology used in the proposed development. Furthermore, silt-trap inspection chambers are included downstream of each filter drain and swale as recommended in the SuDS audit. Refer to Dwg.2104/14 for further detail.

7.3 Regional Control

- 7.3.1 Regional control comprises of treatment facilities to reduce pollutants from runoff and control the surface water runoff rate to predevelopment rates.
- 7.3.2 As part of the overall regional control for the site it is proposed to use a 6No.void arched **attenuation systems**, such as the StormTech MC4500 system (Fig.14).

Fig. 14 - StormTech Attenuation System

7.3.3 The flow rate of the run-off outfalling from the attenuation systems is to be controlled using vortex control devices such as Hydrobrake vortex control devices.

- 7.3.4 Interception of the "first flush" of rainfall is captured upstream of the outfalls and can infiltrate to ground where possible. The interception storage will be within the stone base of the permeable paving, in the stone below the filter drain pipework and swales, in the sub-strata of the green roof systems and in the stone base of the attenuation storage areas. As per the parameters laid out in the GDSDS the interception volume was calculated for the total site as per Tables 4 & 5.
- 7.3.5 A class 1 petrol interceptor (PI) is to be provided upstream of inlets to attenuation Tanks 1 & 6. These PI's will further remove any pollutants not already captured in the above noted interception and treatment train elements. Sizing of the interceptors are based on the Microdrainage calculated flowrates and manufacturers details tables and can be viewed in Appendix 12.6 of this report as part of the SuDS audit procedure.
- 7.3.6 Prevention of pollutants and sediments entering the receiving watercourse has been achieved in providing Interception Storage throughout the proposed development. The interception will take place from the head of the catchment right down to the Hydrobrake manhole on the application lands. Refer to paragraphs 6.37 & 6.38 above and to Dwg.2104/13 & 15 for further detail.

7.4 SuDS Summary

- 7.4.1 Interception will achieved be within the voids of the stone base of the permeable paving, in the stone below the filter drain pipework, in the tree pits, swales, bio-retention areas, in the green roof systems and in the stone base of the attenuation storage. As per the parameters laid out in the GDSDS the interception volume was calculated and is summarised in the Tables 4 & 5. Refer to Appendix 12.2 for detailed calculations.
- 7.4.2 Replicating the natural characteristics and providing amenity/biodiversity will be encouraged by creating the roadside grassed swales, tree pits, bio-retention areas, green roofs, and filter drains.
- 7.4.3 The overall site surface water runoff rate has been restricted to the greenfield runoff rate, Qbar (44.2 l/s) and the DLRCC recommended HR Wallingford UK SuDS calculations for same can be viewed in Appendix 12.5 of this report. Refer also to Chapter 8 for background on the determination of the soil type used in the Qbar calculation.
- 7.4.4 Refer to the appendix and to Dwg. No's 2104/03-05 and 13-14 for the drainage layout and SuDS features details.
- 7.4.5 In providing the above noted rear garden filter drains, roadside filter swales, house rainwater butts, permeable paving systems, catchpits,

tree pits, bio-retention areas, green roofs, attenuation storage, greenfield run off vortex control and petrol interceptors it is proposed that the SuDS treatment of the run-off has been adequately addressed. The above noted proposals have been discussed and agreed in principle with DLRCC Drainage Department as during the pre-planning application meetings.

7.4.6 In advance of submission of the main planning application and in accordance with the requirements of the Stormwater Management Policy of the DLRCC County Development Plan 2022-2028, a Stormwater Audit has been carried out by Punch Consulting Engineers for the proposed development, was submitted to DLRCC Drainage Department and is included in Appendix 12.6 of this report.

8.0 Determination of Qbar

- 8.1 The allowable surface water outfall rate Qbar is based on the greenfield run off rate of the <u>drained</u> site area, as specified in the GDSDS section 6.6.1.2. As recommended in the DLRCC Stormwater Management Policy document, the Wallingford UKSuDS Greenfield runoff rate estimation tool was used to calculate the Qbar for the site, refer to Appendix 12.5.
- 8.2 While the development area of the site is c.10.8Ha in this application, the actual positive drained area is c.9.92Ha. This is the area used in the calculation of Qbar.
- 8.3 The Standard Annual Average Rainfall for the Kilternan Site is 1003mm as determined from Met Eireann 1km² grid dataset. Refer to Appendix 12.14 for the Met Eireann data.
- 8.4 The value for SOIL used in the IH 124 Qbar formula noted above is derived from the pervious surface runoff factor (SPR) using the formula

SOIL = $\frac{(0.151 + 0.352 + 0.453 + 0.4554 + 0.555)}{S1 + S2 + S3 + S4 + S5}$ Where the soil type S1-S5 is determined in accordance with the following paragraphs.

- 8.5 In determination of the SOIL value for this Kilternan site, <u>a number of different sources</u> of data were reviewed such as the site specific site investigation trial holes, the soakaway tests, the Winter Rainfall Acceptance Potential (WRAP) the Wallingford Procedure Volume 3 Maps, the Flood Studies Report (FSR NERC, 1975), Transport Infrastructure Ireland (TII, formerly NRA) Drainage of Runoff from Natural Catchments 2015, HR Wallingford website, the site specific topographical survey as well as site visits by the design engineer. The following paragraphs provide context and detail behind the choosing of the SOIL Type 3 for the Qbar calculation.
- 8.6 As part of the preparation for the planning application, research into the existing site ground conditions were undertaken. Furthermore, a Hydrological and Hydrological Risk Assessment report prepared by Enviroguide Consulting has been completed and is included with the planning application refer to that report for further detail.
- 8.7 Site investigations were undertaken including trial hole opening and soakaway testing. Refer to Appendix 12.8 of this report for the SI results.
- 8.8 In total 6No. soakaway tests were carried out in accordance with BRE Digest 365 and the results indicated infiltration rates varied between

unobtainable f values up to 9.3×10^{-6} m/s. These results indicate limited but some availability for infiltration across the site. Refer to the soakaway test results in Appendix 12.8 of this report for further information.

- 8.9 The sub-soil conditions as determined by trial hole opening noted topsoil over cohesive clay overlying silt above broken granite.
- 8.10 A review of the Geological Survey of Ireland website http://www.gsi.ie and that of the Teagasc sub specific http://www.gsi.ie websites both of which provide publicly available soils and bedrock datasets.
- 8.11 The soil association composition as determined from the Teagasc data is noted as Carrigvahanagh peat over lithoskeletal acid igneous rock on most of the site. Refer Fig.15 below and to Appendix 12.7 of this report for the summary extracts from the GSI/Teagasc datasets.

Fig.15 - GSI/Teagasc Soil Data

8.12 SOIL indices (1 to 5) are defined in the Flood Studies Report (NERC, 1975). The index broadly describes the maximum runoff potential and was derived by a consideration of soil permeability and topographic slope, see Table 10 below;

F 2K 2011	Indices
Soil Type 1	Well drained permeable sandy or loamy soils and shallower analogues over highly permeable limestone, chalk, sandstone, and related drifts.
	Earth peat soils drained by dykes and pumps
	Less permeable loamy over clayey soils on plateaux adjacent to very permeable soils in valleys
Soil	Very permeable soils with shallow ground water
туре 2	Permeable soils over rock or fragipan, commonly on slopes in western Britain associated with smaller areas of less permeable wet soils.
	Moderately permeable soils, some with slowly permeable sub-soils
Soil Type 3	Relatively impermeable soils in boulder and sedimentary clays, and in alluvium.
	Permeable soils with shallow ground water in low lying areas.
	Mixed areas of impermeable and permeable soils in approximately equal proportions.
Soil Type 4	Clayey, or loamy over clayey soils with an impermeable layer at shallow depth.
Soil Type 5	Soils of wet uplands with peaty or humose surface horizons and impermeable layers at shallow depth
	Deep raw peat associated with gentle upland slopes or basin sites
	Bare rock cliffs and screes (iv) shallow, permeable rocky soils on steep slopes.
Based on	the above definitions a SOIL Type ? or A could be chosen for the
Kilternar	Village site

Table 10 - FSR Soil Indices

8.13 The WRAP map gives a broad-spectrum overview of the soil type location across the entire country as per Fig.16 below;

Fig. 16 - WRAP Map - Full

8.14 At an expanded scale and overlaid with the Kilternan site specific location the WRAP map and Soil index is as Fig.17 below;

Fig. 17 - WRAP Map - Local

- 8.15 Based on the WRAP map a **SOIL value of 5** could be interpreted but is not applied for this site. It is noted that SOIL type 5 is rarely applied and is more associated with exposed rock or peat wetlands.
- 8.16 From the FSR table, reproduced in in Fig.18 below, showing the noted drainage and slope classes, the Soil type could be interpolated between a type 4 and a type 3.

	Denth to				5	Slope Classe	S			
Drainage Class	Depth to		0-2 ⁰	2-8 ⁰ >8 ⁰						
	laver (cm)			Per	emability rat	es above imp	ermeable la	yers		
	luyer (em)	Rapid (1)	Medium (2)	Slow (3)	Rapid (1)	Medium (2)	Slow (3)	Rapid (1)	Medium (2)	Slow (3)
	>80		1		1			1	2	3
1	40-80		1			2		3		4
	<40									
	>80	•					>			
2	40-80	2			3		\checkmark		+	
	<40	3				• • • •	4			
	>80		-						1	
3	40-80						5			
	<40	1 1	3						-	

Winter rain acceptance indices:1, very high; 2, high: 3, moderate; 4, low; 5, very low Upland peat and peaty soils are in Class 5. Urban areas are unclassified.

Fig. 18 - Soil Type Table

8.17 Reference to the Transport Infrastructure Ireland -TII (formerly the National Roads Authority - NRA) publication Drainage of Runoff from Natural Catchments 2015, Volume 4 Sections 2 of the Design Manual for Roads and Bridges (DMRB) the following table was noted (Fig.19);

General soil description	Runoff potential	Soil class
Well drained sandy, loamy or earthy peat soils Less permeable loamy soils over clayey soils on plateaux adjacent to very permeable soils in valleys	Very low	s ₁
Very permeable soils (e.g. gravel, sand) with shallow groundwater Permeable soils over rocks Moderately permeable soils some with slowly permeable subsoils	Low	s ₂
Very fine sands, silts and sedimentary clays Permeable soils (e.g. gravel, sand) with shallow groundwater in low lying areas Mixed areas of permeable and impermeable soils in similar proportions	Moderate	S3
Clayey or loamy soils	High	S4
Soils of the wet uplands: Bare rocks or cliffs Shallow, permeable rocky soils on steep slopes Peats with impermeable layers at shallow depth	Very high	S5

Fig. 19 - TII Soil Class

- 8.18 Using the results of the site investigation trial holes as well as the Teagasc data sets noted previously, a **Soil class of S4** could be interpolated from the TII Fig.16 above but is not applied for this Kilternan Village site.
- 8.19 In reference to the HR Wallingford online design tool, it is noted that a **SOIL type 5** was the default value given for the input site coordinates. but is not applied for this site. It is noted that SOIL type 5 is rarely applied and is more associated with exposed rock or peat wetlands.
- 8.20 The site is generally flat in the western side and is more steeply sloped on the eastern side but the underlying soil type evidenced from the trial hole logs is consistent in that the strata are topsoil over clays over silts over broken granite. Refer to Appendix 12.8 for the trial hole and soakaway test results.
- 8.21 Based on interpretation of each of the above data sets a Soil Type 3 or 4 could be reasonably be interpreted. As part of the pre-planning consultations, agreement in principle was reached with the DLRCC Drainage Department and a **Type 3 soil** was chosen as appropriate for

this site. The decision to choose a type 3 is deemed as conservative and yields a lower outfall rate than of a soil type 4.

8.22 From the GDSDS Table 6.7, shown in Fig.20 below, using a Soil value of 3 equates to an SPR value of 0.37. The SPR value of 0.37 was used in the HR Wallingford Qbar calculator to override the default higher SPR value of 0.53.

SOIL	SPR value (% runoff)
1	0.1
2	0.3
3	0.37
4	0.47
5	0.53

Fig. 20 - GDSDS SPR Values

8.23 Using the DLRCC recommended HR Wallingford UK SuDS calculation tool the resultant **Qbar = 44.2 l/s.** Refer to Appendix 12.5 for the calculation sheet.

9.0 S/W Design Conclusion

- 9.1 The S/W outfalls are described in detail in Section 6 of this report.
- 9.2 Full SuDS treatment train approach has been implemented in accordance with the CIRIA SuDS Manual as described in Section 7 above.
- 9.3 A thorough examination of the site characteristics were undertaken in determination of the soil type and greenfield run off rate as described in Section 8 above.
- 9.4 The drainage design and attenuation storage volumes have been determined using an industry standard computer modelling software program MicroDrainage, for designing drainage networks as described in Section 6 above and are included in Appendix 12.1 of this report. Climate change of 20% and Urban Creep of 10% has been applied in the design and is detailed in Section 6 above.
- 9.5 A Site-Specific Flood Risk Assessment was completed and is included in the application as a separate report.
- 9.6 A Hydrological and Hydrological Risk Assessment report prepared by Enviroguide Consulting has been completed and is included with the planning application refer to that report for further detail.
- 9.7 Pre-planning consultations were held with the DLRCC Drainage Department and their requirements were ascertained and complied with in this document and the accompanying drawings.
- 9.8 In accordance with the requirements of the Stormwater Management Policy of the DLRCC County Development Plan 2022-2028, in advance of submission of the main planning application, a Storm Water Audit has been carried out for the proposed development, submitted to the Drainage Department of DLRCC and is included in Appendix 12.6 of this report.
- 9.9 Should planning permission be granted the Applicant has the ability to deliver the services and ancillary works required to implement the designed scheme in full. Letters of consent relating to connection to services and crossing lands not in the Applicants ownership are included in the Appendix 12.15 of this report.

10.0 Wastewater Infrastructure

- 10.1 Foul drainage records drawings were obtained from Irish Water/DLRCC in preparation for this planning application and are included in Appendix 12.11 of this document.
- 10.2 A Pre-Connection Enquiry Form application (PCEA) was submitted to Irish Water (IW) and a Confirmation of Feasibility (CoF) was received from IW (ref.CDS21006509) noting that a foul connection is *"feasible without infrastructure upgrade"*. A copy of the IW Confirmation of Feasibility letter can be viewed in the appendix of this report. Further to the CoF from IW, a full design submission was made for the wastewater infrastructure. Subsequently IW have issued the Statement of Design acceptance letter (Ref.CDS20006509) issued on 01/06/22. A copy of the IW design acceptance letter and correspondence can be viewed in Appendix 12.16 of this report.
- 10.3 The minimum public sewer diameter is to be 225mm and the foul drains/sewer are to be in accordance with the Irish Water Code of Practice for Wastewater Infrastructure 2020.

Foul Sewer Design Criteria				
Min.velocity	0.75m/s			
Max.velocity	3m/s			
Min.sewer size for TIC	225mm diameter			
Pipe friction (Ks)	1.5mm			
Minimum pipe depth	1.2m below roads			
	0.9m in open/grassed spaces			
Ave.Occupancy	2.7 persons/unit			
Residential loading/person/day	150 l/day			
Commercial loading/person/day	50 l/d			

Table 11 - Foul Sewer Design Criteria

- 10.4 Each individual house is to be connected to the main public foul sewer using a 100mm diameter drain with a minimum gradient of 1/60 in any one drainage connection.
- 10.5 The proposed foul outfall from c.10.5 Ha the subject site will be via the existing piped foul drainage system constructed as part of the Rockville schemes (D17A/0793 and D18A/0566). This existing infrastructure in turn outfalls downstream into the existing Irish Water owned 300mm foul drainage piped infrastructure on Glenamuck Road. Refer to Dwg.2104/07 for further detail. The existing foul sewer has been submitted by the

Rockville developer for taking-in-charge by Irish Water and a letter of consent for the connection into this foul pipe has been provided the sewer owner and is included in Appendix 12.15 of this report.

- 10.6 Located in the north corner of the subject site, apartment Blocks C & D (59No. units) will outfall the localised foul flow from into the foul drainage infrastructure to be provided as part of the GDRS project in Glenamuck road. The foul drainage connection spur from the GDRS infrastructure has been agreed with the DLRCC GDRS project office and is incorporated into that road project. Connection into same is subject to a successful planning permission and agreement with Irish Water. Refer to Dwg.2104/07 & 30 and Appendix 12.17 for further detail.
- 10.7 Refer to Dwg.No.2104/06 & 07 for the alignment and levels of the proposed foul network.
- 10.8 The proposed development is to be phased as 1, 2, 2A, 3, 4 & 5. The extent of each phase and the main wastewater drainage infrastructure associated with each phase is identified on Dwg.No.2104/18. All main wastewater services necessary to serve each phase are to be completed in full in each area from the head of the system to outfall. Final connection dates to be agreed with IW at connection application stage subject to a successful planning approval.
- 10.9 Design estimates for the foul water loading are as per Table's 12 and 13 below and refer to Appendix 12.18 for more calculations;Foul Wastewater Calculations for TOTAL SITE

New Network - DOMESTIC Wastewater Flows						
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loa (PxG)	ding (l/day)
Residential	383 Units	2.7No./Unit	1034	150		155,100
				Total =	155,1	100 l/day
Flowrate per day (I/s)						1.80l/s
Growth Rate					1	1
				Infiltration (I)	10%	0.18
				Ory Weather Flow	PG + I	1.97
						l/s
			Pea	king Factor (Pf _{Dom)}	3	
Design Foul Flow (I/s)					Pf _{Dom}	5.91
					x PG	l/s
Misconnection Allowance (SW)					1.5%	0.09l/s
				Design Flow (l/s)		6.00
						l/s

Based on Irish Water Code of Practice Wastewater Infrastructure (Rev 2 July 2020) Table 12 - Residential Wastewater Calculations

New Netw	New Network - COMMERCIAL Wastewater Flows						
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loa (PxG)	ading)(l/day)	
Retail/Comm	2,975m ²	1per 5m ²	595	50		29,750	
Crèche	439m ²	1child/8m ² + Staff (20%) + support accommodation	65	50		3,250	
				Total =	33,0	00 l/day	
			Flowrate p	per 12hr day (l/s)		0.76l/s	
				Growth Rate	1	1	
				Infiltration (I)	10%	0.08	
Dry Weather Flow PG + 0.83 I 1/s						0.83 l/s	
Peaking Factor (Pf _{Dom)}							
Design Foul Flow (I/s) Pf _{Dom} 5.02 x PG 1/s						5.02 l/s	
	Misconnection Allowance (SW) 1.5% 0.081/s						
				Design Flow (l/s)		5.1 l/s	

Based on Irish Water Code of Practice Wastewater Infrastructure (Rev 2 July 2020)

Table 13 - Commercial Wastewater Calculations

10.10 As the development of the site is to be phased, calculations for the phased wastewater flows are included in Appendix 12.18 of this report. A summary of the phasing wastewater calculations are shown in Table 14 below and Final connection dates to be agreed with IW at connection application stage subject to a successful planning approval;

Usage	Residential Design Flow (l/s)	Commercial Design Flow (l/s)
Phase 1	2.8	
Phase 2	2.3	
Phase 2A	0.9	3.8
Phase 3	1.8	
Phase 4	3.1	
Phase 5	0.3	1.4

Table 14 - Wastewater Phased Flowrates

10.11 Details of manholes are to be as per Dwg.No.2104/20 and in accordance with the Irish Water Code of Practice for Wastewater Infrastructure 2020.

11.0 Site Potable Watermain

- 11.1 Water infrastructure records drawings were obtained from Irish Water/DLRCC in preparation for this planning application and are included in Appendix 12.11 of this document.
- 11.2 A Pre-Connection Enquiry Form application (PCEA) was submitted to Irish Water and a confirmation of available service was received from IW (ref.CDS21006509) noting that the water connection was *"feasible without infrastructure upgrade*". A copy of the IW Confirmation of Feasibility (CoF) letter can be viewed in Appendix 12.16 of this report.
- 11.3 Further to the CoF from IW, a full design submission was made for the water infrastructure. Subsequently IW have issued the Statement of Design acceptance letter (Ref.CDS20006509) issued on 01/06/22. A copy of the IW design acceptance letter can be viewed in Appendix 12.16 of this report.
- 11.4 There is an existing 300mmØ diameter water supply main located along the Enniskerry Road passing in front of the proposed development and likewise a 250mm diameter main along Glenamuck Road. It is proposed to make a new connections into these watermains main to supply the development as confirmed by the IW CoF and Statement of Design Acceptance letters.
- 11.5 The applicant has enclosed (Appendix 12.5) copies of letters of consent from Ken Fennell (Statutory Receiver) over the portion of lands that sits outside the applicants ownership on the Glenamuck Rd. For clarity the applicant has full rights of access over/under this strip of land and can confirm that should a planning permission be granted the Applicant has the ability to deliver the services and ancillary works required to implement the designed scheme in full.
- 11.6 Refer to Dwg.No.'s 2104/09-11 for the watermain layout.
- 11.7 The proposed development is to be phased as 1, 2, 2A, 3, 4 & 5. The extent of each phase and the main water infrastructure associated with each phase is identified on Dwg.No.2104/18. All main water services necessary to serve each phase are to be completed in full in each area from the head of the system to outfall. Final connection dates to be agreed with IW at connection application stage subject to a successful planning approval.
- 11.8 Each individual residential dwelling within the development is to be provided with a boundary box for a separate domestic water meter. The type and configuration of the water meter is to be agreed with Irish Water in advance of construction commencing at the development.

- 11.9 Each dwelling will be fitted with a cold-water storage tank to provide 24 hours of supply.
- 11.10 In accordance with best practice, the use of water conservation appliances in the buildings are to be employed as part of this scheme to reduce the water demand. Although the consumption of treated water depends a lot on the behaviour of consumers, demand on the network is limited in the scheme by incorporating water saving tap valves, eco-flush toilet system and water saving appliances.
- 11.11 As a further measure of demand reduction, it is proposed to provide c.172No. 200l **rainwater butts** to the rear of each gabling property. This will collect rainwater from the house roofs for use in garden irrigation, therefore reducing drinking water demand and decreasing run-off from the site. Refer to Appendix 12.5 for more information.
- 11.12 All watermain layout and details are to be in accordance with the Irish Water Code of Practice for Water Infrastructure 2020 and the Water Infrastructure Standard details 2020.
- 11.13 Estimates of the water demand for the site were carried out using the guidelines in accordance with the IW COP for Water Infrastructure 2020 publication and are shown in Table's 15 and 16 below and in Appendix 12.18;

New M	New Network - DOMESTIC Water Demand							
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (I/day)	Ave. Daily Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)
Resi'	383 Units	2.7 No./Unit	1034	150	155,115	1.80	2.24	11.2 l/s
Peak Ho	our Water De	emand (Dome	stic)					11.2 /s

Water Demand Calculations for TOTAL SITE

Based on Irish Water Code of Practice for Water Infrastructure (Rev 2 July 2020)

Table 15 - Residential Water Demand Calculations

New Network - COMMERCIAL Water Demand								
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (l/day)	Ave. Daily(12hr) Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)
Retail/ Comm	2,975m ²	1per 5m ²	595	50	29,750	0.69	0.86	4.3
Crèche	439m ²	1child/8m ² + Staff (20%) + support accommoda tion	66	50	3,293	0.08	0.09	0.47
Peak Hou	r Water Den	nand (Commer	cial)					4.8l/s

Based on Irish Water Code of Practice for Water Infrastructure (Rev 2 July 2020)

Table 16 - Commercial Water Demand Calculations

11.14 As the development of the site is to be phased, calculations for the phased water demand are included in the appendix of this report. A summary of the phasing wastewater calculations are shown in Table 17 below;

Usage	Residential Design Flow (l/s)	Commercial Design Flow (l/s)
Phase 1	2.7	
Phase 2	2.1	
Phase 2A	1.6	2.4
Phase 3	1.7	
Phase 4	2.8	
Phase 5	0.3	1.5

Table 17 - Commercial Water Demand Calculations

12.0 APPENDIX

- 12.1 MicroDrainage Drainage Calculations
- 12.2 Interception and Sample Swale Calculations
- 12.3 StormTech System Calculations & Details
- 12.4 OPW PFRA Map No.2019/MAP/221/A
- 12.5 HR Wallingford/UK SuDS Report
- 12.6 SuDS Audit Report
- 12.7 GSI Data
- 12.8 Site Investigations Reports
- 12.9 DLRCC Flood Zone Map No.9
- 12.10 DLRCC Local Area Plan Map.NoPL-13-402
- 12.11 IW/DLRCC Records Drawings
- 12.12 OPW Flood Hazard Mapping Report
- 12.13 Green Roof Information
- 12.14 Met Eireann Data Sheet
- 12.15 Letters of Consent
- 12.16 Irish Water CoF/Design Acceptance Letters
- 12.17 DLRCC GDRS Project Correspondence
- 12.18 Water and Wastewater Calculations

Appendix 12.1

Micro Drainage Calculations

Roger Mullarkey & Associates				
Duncreevan	Kilternan Village			
Kilcock	Stage 3 Planning May'22			
Co. Kildare, Ireland		Micro		
Date 14/06/2022 18:25	Designed by R.M.			
File Kilternan Planning May 22.MDX	Checked by	Diamage		
Innovyze	Network 2020.1.3	- IL		
STODM SEWED DEST	CN by the Modified Pational Method			

<u>ONM SEWER DESIGN by the Modified Rational Meth</u>

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and IrelandReturn Period (years)2PIMP (%)100M5-60 (mm)18.000Add Flow / Climate Change (%)0Ratio R0.271Minimum Backdrop Height (m)0.200Maximum Rainfall (mm/hr)90Maximum Backdrop Height (m)3.000Maximum Time of Concentration (mins)30 Min Design Depth for Optimisation (m)1.500Foul Sewage (1/s/ha)0.000Min Vel for Auto Design only (m/s)0.75Volumetric Runoff Coeff.1.000Min Slope for Optimisation (1:X)180

Designed with Level Soffits

Time Area Diagram for Storm at outfall SExisting Mh (pipe S1.018)

Time
(mins)Area
(ha)Time
(mins)Area
(mins)Time
(mins)Area
(mins)0-40.8364-84.4168-121.02512-160.000

Total Area Contributing (ha) = 6.276

Total Pipe Volume $(m^3) = 268.031$

Time Area Diagram at outfall SGlenamuck Rd (pipe S17.004)

Time
(mins)Area
(ha)Time
(mins)Area
(mins)0-40.1954-80.023Total Area
Contributing(ha) = 0.218Total Pipe
Volume(m³) = 5.187

Network Design Table for Storm

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
a1 000	40 670	0 400	0.0	0 0 0 7	4 0 0		0 0	0 600		200		
SI.000	40.6/8	0.423	96.2	0.097	4.00		0.0	0.600	0	300	Pipe/Conduit	
S1.001	43.770	0.362	120.9	0.121	0.00		0.0	0.600	0	300	Pipe/Conduit	
S1.002	55.734	1.922	29.0	0.125	0.00		0.0	0.600	0	300	Pipe/Conduit	•
S1.003	22.349	0.757	29.5	0.100	0.00		0.0	0.600	0	300	Pipe/Conduit	ē

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣВ	ase	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(l/s)
s1.000	56.10	4.42	140.910	0.097		0.0	0.0	0.0	1.60	113.3	19.6
S1.001	53.97	4.93	140.487	0.218		0.0	0.0	0.0	1.43	101.0	42.4
S1.002	52.74	5.25	140.125	0.342		0.0	0.0	0.0	2.93	207.2	65.2
s1.003	52.27	5.38	138.201	0.442		0.0	0.0	0.0	2.90	205.3	83.4

Roger Mullarkey & Associates		Page 2
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Micro
Date 14/06/2022 18:25	Designed by R.M.	Desinado
File Kilternan Planning May 22.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba: Flow	se (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S2.000	43.680	0.771	56.7	0.080	4.00		0.0	0.600	0	225	Pipe/Conduit	•
S2.001	30.954	0.729	42.5	0.086	0.00		0.0	0.600	0	300	Pipe/Conduit	0
S2.002	55.087	0.551	100.0	0.121	0.00		0.0	0.600	0	300	Pipe/Conduit	•
S1.004	31.603	0.781	40.5	0.063	0.00		0.0	0.600	0	375	Pipe/Conduit	0
S1.005	31.723	1.035	30.7	0.115	0.00		0.0	0.600	0	375	Pipe/Conduit	۵
S3.000	38.235	0.283	135.0	0.034	4.00		0.0	0.600	0	300	Pipe/Conduit	0
S3.001	12.862	0.086	149.6	0.007	0.00		0.0	0.600	0	300	Pipe/Conduit	0
S3.002	22.723	0.151	150.5	0.114	0.00		0.0	0.600	0	300	Pipe/Conduit	0
S3.003	31.593	0.211	149.7	0.065	0.00		0.0	0.600	0	375	Pipe/Conduit	0
S3.004	21.926	0.119	184.3	0.080	0.00		0.0	0.600	0	375	Pipe/Conduit	0
S3.005	15.359	0.119	129.1	0.001	0.00		0.0	0.600	0	375	Pipe/Conduit	ď
S1.006	20.829	0.150	138.9	0.027	0.00		0.0	0.600	0	600	Pipe/Conduit	•
S1.007	19.092	0.133	144.0	0.038	0.00		0.0	0.600	0	600	Pipe/Conduit	ď
S1.008	63.723	0.394	161.7	0.189	0.00		0.0	0.600	0	600	Pipe/Conduit	0
S4.000	34.163	1.708	20.0	0.036	4.00		0.0	0.600	0	225	Pipe/Conduit	ð
S1.009	42.021	0.276	152.3	0.190	0.00		0.0	0.600	0	600	Pipe/Conduit	۵
S5.000	44.747	1.217	36.8	0.119	4.00		0.0	0.600	0	225	Pipe/Conduit	•
S5.001	17.701	0.754	23.5	0.042	0.00		0.0	0.600	0	225	Pipe/Conduit	0
S5.002	28.564	0.712	40.1	0.062	0.00		0.0	0.600	0	300	Pipe/Conduit	ന്
S1.010	8.793	0.516	17.0	0.102	0.00		0.0	0.600	0	600	Pipe/Conduit	A
S1.011	23.747	0.118	201.2	0.021	0.00		0.0	0.600	0	600	Pipe/Conduit	ð

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣВ	ase	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(l/s)
S2.000	56.12	4.42	139.210	0.080		0.0	0.0	0.0	1.74	69.2	16.2
S2.001	55.21	4.63	138.380	0.166		0.0	0.0	0.0	2.42	171.0	33.1
S2.002	52.88	5.22	137.500	0.287		0.0	0.0	0.0	1.57	111.2	54.8
S1.004	51.60	5.56	136.700	0.792		0.0	0.0	0.0	2.86	315.4	147.5
S1.005	51.04	5.72	135.900	0.907		0.0	0.0	0.0	3.28	362.6	167.1
S3.000	55.89	4.47	135.080	0.034		0.0	0.0	0.0	1.35	95.5	7.0
S3.001	55.17	4.64	134.790	0.041		0.0	0.0	0.0	1.28	90.7	8.2
S3.002	53.96	4.93	134.700	0.155		0.0	0.0	0.0	1.28	90.4	30.2
S3.003	52.59	5.29	134.480	0.220		0.0	0.0	0.0	1.48	163.3	41.7
S3.004	51.59	5.57	134.250	0.299		0.0	0.0	0.0	1.33	147.1	55.8
S3.005	51.03	5.73	134.131	0.301		0.0	0.0	0.0	1.59	176.0	55.8
S1.006	50.46	5.89	133.950	1.234		0.0	0.0	0.0	2.06	583.8	224.9
S1.007	49.94	6.05	133.800	1.272		0.0	0.0	0.0	2.03	573.2	229.4
S1.008	48.20	6.61	133.650	1.461		0.0	0.0	0.0	1.91	540.7	254.3
S4.000	57.13	4.19	136.100	0.036		0.0	0.0	0.0	2.94	116.9	7.5
S1.009	47.17	6.96	133.260	1.688		0.0	0.0	0.0	1.97	557.4	287.4
S5.000	56.45	4.34	139.100	0.119		0.0	0.0	0.0	2.16	86.1	24.2
S5.001	55.97	4.45	136.850	0.161		0.0	0.0	0.0	2.71	107.8	32.6
S5.002	55.15	4.64	136.021	0.224		0.0	0.0	0.0	2.49	176.0	44.5
S1.010	47.10	6.99	132.980	2.013		0.0	0.0	0.0	5.92	1673.1	342.4
S1.011	46.46	7.22	132.250	2.034		0.0	0.0	0.0	1.71	484.3	342.4

©1982-2020 Innovyze

		-
Roger Mullarkey & Associates	Page 3	
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Mirro
Date 14/06/2022 18:25	Designed by R.M.	
File Kilternan Planning May 22.MDX	Checked by	Diamada
Innovyze	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	. ,				,						
S6.000	51.580	0.572	90.2	0.127	4.00	0.0	0.600	0	300	Pipe/Conduit	٠
S7.000 S7.001	20.919 56.030	0.139 0.467	150.0 120.0	0.079 0.068	6.00 0.00	0.0	0.600 0.600	0 0	300 300	Pipe/Conduit Pipe/Conduit	⊕ ₽
S8.000 S8.001	35.234 12.620	0.294 0.105	119.8 120.0	0.079 0.011	6.00 0.00	0.0	0.600 0.600	0	300 300	Pipe/Conduit Pipe/Conduit	•
S6.001 S6.002 S6.003 S6.004	50.405 37.839 15.215 37.471	0.421 0.315 0.127 0.134	119.7 120.1 119.8 279.6	0.142 0.397 0.063 0.013	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600	0 0 0	450 450 450 450	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	•
S9.000 S9.001 S9.002	25.127 11.348 7.707	0.251 0.174 0.053	100.1 65.2 145.4	0.053 0.015 0.095	4.00 0.00 0.00	0.0 0.0 0.0	0.600 0.600 0.600	0 0 0	300 300 450	Pipe/Conduit Pipe/Conduit Pipe/Conduit	•
S10.000 S10.001 S10.002	36.604 21.049 22.929	0.366 0.191 0.124	100.0 110.2 184.9	0.119 0.159 0.086	4.00 0.00 0.00	0.0 0.0 0.0	0.600 0.600 0.600	0 0 0	300 300 450	Pipe/Conduit Pipe/Conduit Pipe/Conduit	8
S11.000 S11.001 S11.002	31.625 7.621 5.767	0.316 0.072 0.029	100.0 105.8 198.9	0.071 0.052 0.005	4.00 0.00 0.00	0.0 0.0 0.0	0.600 0.600 0.600	0 0 0	225 300 450	Pipe/Conduit Pipe/Conduit Pipe/Conduit	•
S9.003 S9.004	15.123 54.407	0.105 0.448	144.0 121.4	0.002 0.131	0.00	0.0	0.600	0	225 300	Pipe/Conduit Pipe/Conduit	•

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(l/s)
S6.000	55.68	4.52	140.700	0.127	0.0	0.0	0.0	1.66	117.1	25.4
S7.000	49.23	6.27	140.800	0.079	0.0	0.0	0.0	1.28	90.6	14.0
S7.001	47.28	6.92	140.650	0.147	0.0	0.0	0.0	1.43	101.4	25.1
S8.000	48.80	6.41	140.580	0.079	0.0	0.0	0.0	1.44	101.4	14.0
S8.001	48.35	6.56	140.286	0.090	0.0	0.0	0.0	1.43	101.4	15.7
S6.001	46.03	7.38	140.036	0.505	0.0	0.0	0.0	1.86	295.3	84.0
S6.002	45.15	7.72	139.615	0.903	0.0	0.0	0.0	1.85	294.9	147.1
S6.003	44.80	7.85	139.300	0.965	0.0	0.0	0.0	1.86	295.2	156.1
S6.004	43.56	8.37	138.870	0.978	0.0	0.0	0.0	1.21	192.6	156.1
S9.000	56.80	4.27	140.650	0.053	0.0	0.0	0.0	1.57	111.1	10.9
S9.001	56.36	4.36	140.399	0.068	0.0	0.0	0.0	1.95	137.8	13.8
S9.002	56.03	4.44	140.000	0.163	0.0	0.0	0.0	1.68	267.8	33.0
S10.000	56.25	4.39	141.500	0.119	0.0	0.0	0.0	1.57	111.1	24.3
S10.001	55.24	4.62	141.134	0.279	0.0	0.0	0.0	1.50	105.8	55.6
S10.002	54.19	4.88	140.060	0.365	0.0	0.0	0.0	1.49	237.3	71.4
s11.000	56.19	4.40	141.130	0.071	0.0	0.0	0.0	1.31	52.0	14.5
S11.001	55.82	4.49	140.700	0.124	0.0	0.0	0.0	1.53	108.0	24.9
S11.002	55.54	4.55	140.100	0.129	0.0	0.0	0.0	1.44	228.7	25.8
S9.003	53.28	5.11	139.900	0.659	0.0	0.0	0.0	1.09	43.2«	126.7
S9.004	50.96	5.75	139.790	0.790	0.0	0.0	0.0	1.43	100.8«	145.3

Roger Mullarkey & Associates	Page 4	
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Micro
Date 14/06/2022 18:25	Designed by R.M.	Desinardo
File Kilternan Planning May 22.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S9.005 S9.006	50.995 47.205	0.336 0.219	151.8 215.7	0.071 0.078	0.00	0.0	0.600	0 0	450 450	Pipe/Conduit Pipe/Conduit	•
S6.005 S6.006 S6.007 S6.008	16.306 26.450 51.993 22.172	0.119 0.185 0.732 1.109	137.0 143.0 71.0 20.0	0.072 0.079 0.110 0.098	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600	0 0 0	225 225 225 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	•
S6.009	10.726	0.505	21.2	0.021	0.00	0.0	0.600	0	225	Pipe/Conduit	ě
<pre>S12.000 S12.001 S12.002</pre>	38.228 14.710 9.963	0.405 0.184 0.077	94.4 79.9 129.4	0.105 0.024 0.046	4.00 0.00 0.00	0.0 0.0 0.0	0.600 0.600 0.600	0 0 0	300 300 300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	ð ď
S12.003 S12.004	17.943 7.788	0.122 0.060	147.1 129.8	0.004 0.034	0.00 0.00	0.0	0.600 0.600	0 0	450 225	Pipe/Conduit Pipe/Conduit	ð •
S13.000	54.291	0.804	67.5	0.158	4.00	0.0	0.600	0	225	Pipe/Conduit	٠
S12.005 S12.006 S12.007	23.014 35.596 35.464	0.239 0.357 0.358	96.3 99.7 99.1	0.062 0.048 0.142	0.00 0.00	0.0	0.600	0	300 300 375	Pipe/Conduit Pipe/Conduit	66
s14.000	34.562	1.069	32.3	0.114	4.00	0.0	0.600	0	225	Pipe/Conduit	۵
S12.008 S12.009 S12.010 S12.011	41.437 39.425 30.682 86.979	0.505 0.826 0.822 0.256	82.1 47.7 37.3 339.9	0.181 0.149 0.045 0.000	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600	0 0 0	375 375 375 450	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	66

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)
S9.005	49.26	6.26	139.280	0.860	0.0	0.0	0.0	1.65	262.1	153.0
S9.006	47.54	6.83	138.927	0.938	0.0	0.0	0.0	1.38	219.5	161.0
S6.005	43.01	8.61	138.708	1.988	0.0	0.0	0.0	1.12	44.3«	308.8
S6.006	42.12	9.02	138.590	2.068	0.0	0.0	0.0	1.09	43.4«	314.5
S6.007	40.98	9.57	138.405	2.177	0.0	0.0	0.0	1.55	61.8«	322.2
S6.008	40.73	9.70	137.670	2.275	0.0	0.0	0.0	2.94	116.9«	334.6
S6.009	40.61	9.76	136.258	2.296	0.0	0.0	0.0	2.85	113.4«	336.7
S12.000	56.23	4.39	140.320	0.105	0.0	0.0	0.0	1.62	114.4	21.4
S12.001	55.62	4.53	139.915	0.129	0.0	0.0	0.0	1.76	124.4	25.9
S12.002	55.11	4.65	139.731	0.175	0.0	0.0	0.0	1.38	97.6	34.9
S12.003	54.38	4.83	139.650	0.180	0.0	0.0	0.0	1.67	266.3	35.3
S12.004	53.92	4.95	139.532	0.213	0.0	0.0	0.0	1.15	45.6	41.5
s13.000	55.47	4.57	141.000	0.158	0.0	0.0	0.0	1.59	63.4	31.7
S12.005	52.99	5.18	139.397	0.434	0.0	0.0	0.0	1.60	113.3	83.0
S12.006	51.61	5.56	139.158	0.482	0.0	0.0	0.0	1.57	111.3	89.9
S12.007	50.49	5.89	138.726	0.625	0.0	0.0	0.0	1.82	201.1	113.9
S14.000	56.87	4.25	140.030	0.114	0.0	0.0	0.0	2.31	91.8	23.3
S12.008	49.36	6.23	138.368	0.919	0.0	0.0	0.0	2.00	221.1	163.9
S12.009	48.58	6.48	137.863	1.068	0.0	0.0	0.0	2.63	290.3	187.4
S12.010	48.06	6.65	137.037	1.113	0.0	0.0	0.0	2.97	328.5	193.2
S12.011	44.50	7.97	135.230	1.113	0.0	0.0	0.0	1.10	174.5«	193.2

Roger Mullarkey & Associates	Page 5	
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Micro
Date 14/06/2022 18:25	Designed by R.M.	Desinado
File Kilternan Planning May 22.MDX	Checked by	Diginarie
Innovyze	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
\$15 000	27 335	0 273	100 0	0 124	4 00		0 0	0 600	0	225	Pipe/Conduit	2
S15.001	41.735	1.225	34.1	0.130	0.00		0.0	0.600	0	300	Pipe/Conduit	U A
S15.002	26.771	0.942	28.4	0.109	0.00		0.0	0.600	0	300	Pipe/Conduit	L L L
s15.003	38.123	1.315	29.0	0.091	0.00		0.0	0.600	0	300	Pipe/Conduit	
S15.004	53.574	0.257	208.5	0.110	0.00		0.0	0.600	0	450	Pipe/Conduit	ð
S12.012	16.181	0.167	96.9	0.051	0.00		0.0	0.600	0	225	Pipe/Conduit	۵
S6.010	18.505	0.171	108.2	0.018	0.00		0.0	0.600	0	300	Pipe/Conduit	A
S6.011	56.227	0.187	300.7	0.043	0.00		0.0	0.600	0	450	Pipe/Conduit	ě
S16.000	49.592	0.331	149.8	0.094	4.00		0.0	0.600	0	450	Pipe/Conduit	ð
S16.001	12.266	0.119	103.1	0.026	0.00		0.0	0.600	0	450	Pipe/Conduit	ď
S1.012	21.327	1.066	20.0	0.037	0.00		0.0	0.600	0	300	Pipe/Conduit	
S1.013	42.270	1.431	29.5	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ă
S1.014	42.351	2.241	18.9	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	Ā
S1.015	24.294	0.759	32.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ā
S1.016	53.448	2.672	20.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ē
S1.017	22.677	0.344	66.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	
S1.018	8.163	0.053	154.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	۵
S17.000	25.190	0.420	60.0	0.000	4.00		0.0	0.600	0	225	Pipe/Conduit	ð
S17.001	35.233	0.573	61.5	0.002	0.00		0.0	0.600	0	225	Pipe/Conduit	ð
S17.002	10.401	0.059	176.3	0.174	0.00		0.0	0.600	0	300	Pipe/Conduit	ð
S17.003	8.526	0.057	150.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ď
S18.000	26.725	0.178	150.1	0.031	4.00		0.0	0.600	0	225	Pipe/Conduit	۵

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S15.000	56.43	4.35	141.050	0.124	0.0	0.0	0.0	1.31	52.0	25.2
S15.001	55.31	4.61	140.702	0.254	0.0	0.0	0.0	2.70	191.0	50.7
S15.002	54.68	4.76	139.477	0.363	0.0	0.0	0.0	2.96	209.3	71.6
S15.003	53.81	4.97	138.535	0.453	0.0	0.0	0.0	2.93	207.2	88.1
S15.004	51.44	5.61	135.160	0.564	0.0	0.0	0.0	1.40	223.3	104.7
S12.012	44.01	8.18	134.897	1.728	0.0	0.0	0.0	1.33	52.8«	274.6
S6.010	40.21	9.97	134.780	4.042	0.0	0.0	0.0	1.51	106.8«	586.9
S6.011	38.76	10.77	132.500	4.085	0.0	0.0	0.0	1.17	185.6«	586.9
S16.000	55.77	4.50	133.050	0.094	0.0	0.0	0.0	1.66	263.8	18.9
S16.001	55.34	4.60	132.719	0.120	0.0	0.0	0.0	2.00	318.5	23.9
S1.012	38.59	10.87	131.600	6.276	0.0	0.0	0.0	3.53	249.6«	874.6
S1.013	38.18	11.11	130.530	6.276	0.0	0.0	0.0	2.90	205.2«	874.6
S1.014	37.86	11.31	128.400	6.276	0.0	0.0	0.0	3.63	256.8«	874.6
S1.015	37.62	11.45	126.150	6.276	0.0	0.0	0.0	2.79	197.2«	874.6
S1.016	37.23	11.70	125.390	6.276	0.0	0.0	0.0	3.53	249.6«	874.6
S1.017	36.92	11.90	122.710	6.276	0.0	0.0	0.0	1.94	137.0«	874.6
S1.018	36.76	12.01	122.320	6.276	0.0	0.0	0.0	1.26	89.4«	874.6
S17.000	56.88	4.25	135.250	0.000	0.0	0.0	0.0	1.69	67.3	0.0
S17.001	55.34	4.60	134.830	0.002	0.0	0.0	0.0	1.67	66.4	0.4
S17.002	54.73	4.75	132.100	0.176	0.0	0.0	0.0	1.18	83.5	34.8
S17.003	54.27	4.86	131.500	0.176	0.0	0.0	0.0	1.28	90.6	34.8
S18.000	56.12	4.42	134.000	0.031	0.0	0.0	0.0	1.06	42.3	6.3

©1982-2020 Innovyze

Roger Mullarkey & Associates						
Duncreevan	Kilternan Village					
Kilcock	Stage 3 Planning May'22					
Co. Kildare, Ireland		Micro				
Date 14/06/2022 18:25	Designed by R.M.	Desinardo				
File Kilternan Planning May 22.MDX	Checked by	Diamade				
Innovyze	Network 2020.1.3					

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Sectio	on Type	Auto Design
S17.004	9.658	0.064	150.9	0.011	0.00	0.0	0.600	0	225	Pipe/0	Conduit	۵
	Network Results Table											
PN	Rai (mm/h	n T hr) (m	.C. (ins)	JS/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add : (1/	Flow 's)	Vel (m/s)	Cap (1/s)	Flow (l/s)

S17.004	53.67	5.01 131.250	0.218	0.0 0.0	0.0	1.06	42.2	42.2

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinargo			
File Kilternan Planning May 22.MDX	Checked by	Diamage			
Innovyze	Network 2020.1.3				

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1 000	User	_	70	0 025	0 017	0 017
1.000	User	-	60	0.006	0.004	0.021
	User	-	60	0.005	0.003	0.024
	User	-	60	0.005	0.003	0.027
	User	-	70	0.025	0.017	0.044
	User	-	37	0.001	0.000	0.045
	User	-	37	0.002	0.001	0.045
	User	_	90 37	0.007	0.008	0.051
	User	_	37	0.003	0.002	0.055
	User	-	100	0.001	0.001	0.056
	User	-	100	0.000	0.000	0.056
	User	-	100	0.017	0.017	0.073
	User	-	70	0.017	0.012	0.085
	User	-	71	0.003	0.002	0.087
	User	-	/1 27	0.003	0.002	0.089
	User	_	37	0.002	0.001	0.090
	User	_	37	0.016	0.006	0.097
1.001	User	-	60	0.005	0.003	0.003
	User	-	69	0.005	0.003	0.006
	User	-	70	0.015	0.011	0.017
	User	-	60	0.010	0.006	0.023
	User	-	37	0.002	0.001	0.024
	User	_	37	0.002	0.001	0.024
	User	_	37	0.025	0.009	0.036
	User	_	71	0.047	0.034	0.070
	User	-	71	0.002	0.002	0.072
	User	-	71	0.003	0.002	0.073
	User	-	71	0.003	0.002	0.075
	User	-	37	0.001	0.001	0.076
	User	-	3/	0.001	0.000	0.076
	User	_	37	0.002	0.001	0.077
	User	_	100	0.014	0.014	0.107
	User	-	100	0.007	0.007	0.114
	User	-	100	0.007	0.007	0.121
1.002	User	-	60	0.005	0.003	0.003
	User	-	71	0.023	0.016	0.019
	User	-	/1	0.012	0.009	0.028
	User	_	37	0.014	0.003	0.033
	User	-	100	0.006	0.006	0.040
	User	-	95	0.000	0.000	0.041
	User	-	95	0.000	0.000	0.041
	User	-	37	0.001	0.000	0.041
	User	-	37	0.011	0.004	0.045
	User	_	/ L 0 5	0.004	0.003	0.048
	User	_	60	0.029	0.028	0.079
	User	_	60	0.005	0.003	0.082
	User	-	37	0.001	0.000	0.082
	User	-	37	0.006	0.002	0.084
	User	-	37	0.003	0.001	0.085
	User	-	37	0.002	0.001	0.086
	User	-	37	0.002	0.001	0.087
	User	_	3/ 100	0.013	0.005	0.091 0 107
	User	_	70	0.026	0.018	0.125
1.003	User	-	37	0.010	0.004	0.004
	User	-	71	0.011	0.008	0.012

Denen Mullenhen C. Beerstetee		Dama 0			
Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinargo			
File Kilternan Planning May 22.MDX	Checked by	Diamade			
Innovyze	Network 2020.1.3				

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	- (ha)
	Ilser	_	37	0 006	0 002	0 014
	User	_	71	0.023	0.016	0.030
	User	-	71	0.011	0.007	0.037
	User	-	71	0.018	0.013	0.050
	User	-	37	0.033	0.012	0.062
	User	-	71	0.002	0.002	0.064
	User	-	60	0.005	0.003	0.067
	User	-	60	0.003	0.002	0.069
	User	-	37	0.001	0.000	0.069
	User	_	100	0.010	0.010	0.079
	User	_	37	0.013	0.011	0.090
2.000	User	_	69	0.003	0.002	0.002
	User	_	69	0.005	0.004	0.005
	User	-	69	0.002	0.002	0.007
	User	-	69	0.005	0.003	0.010
	User	-	37	0.001	0.000	0.011
	User	-	37	0.000	0.000	0.011
	User	-	37	0.002	0.001	0.012
	User	-	95	0.026	0.025	0.03/
	User	_	3/ 71	0.038	0.014	0.051
	User	_	37	0.011	0.007	0.038
	User	_	95	0.002	0.002	0.075
	User	_	95	0.003	0.003	0.078
	User	-	37	0.001	0.001	0.078
	User	-	95	0.002	0.002	0.080
2.001	User	-	37	0.001	0.000	0.000
	User	-	95	0.028	0.026	0.026
	User	-	37	0.039	0.015	0.041
	User	-	37	0.050	0.018	0.059
	User	_	71 37	0.025	0.018	0.077
	User	_	37	0.001	0.000	0.078
	User	_	37	0.001	0.000	0.079
	User	-	37	0.005	0.002	0.080
	User	-	60	0.002	0.001	0.082
	User	-	60	0.002	0.001	0.083
	User	-	60	0.003	0.002	0.085
0 000	User	-	95	0.001	0.001	0.086
2.002	User	-	3/	0.001	0.000	0.000
	User	_	57 71	0.000	0.000	0.001
	User	_	37	0.030	0.012	0.023
	User	_	37	0.006	0.002	0.026
	User	-	37	0.001	0.000	0.026
	User	-	37	0.001	0.000	0.026
	User	-	60	0.003	0.002	0.028
	User	-	60	0.002	0.001	0.029
	User	-	60	0.002	0.001	0.031
	User	_	60 60	0.003	0.002	0.032
	User	_	60	0.001	0.001	0.033
	User	-	60	0.004	0.002	0.036
	User	-	60	0.005	0.003	0.039
	User	-	60	0.005	0.003	0.042
	User	-	60	0.005	0.003	0.045
	User	-	95	0.038	0.036	0.081
	User	-	95	0.007	0.007	0.088
	user	-	100	0.014	0.014	U.102
	User	_	100 71	0.008	0.008	0.116
			, ±			0.110
		C	982-	2020 Inn	ovyze	

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.				
File Kilternan Planning May 22.MDX	Checked by	Diamage			
Innovyze	Network 2020.1.3				

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	-	95	0.001	0.001	0.117
	User	-	95	0.001	0.001	0.118
	User	-	95	0.001	0.001	0.119
	User	-	71	0.002	0.002	0.121
	User	-	37	0.001	0.000	0.121
1 004	User	-	37	0.000	0.000	0.121
1.004	User	-	6U 27	0.013	0.008	0.008
	User	_	37	0.001	0.000	0.008
	User	_	37	0.001	0.000	0.008
	User	_	95	0.001	0.001	0.009
	User	-	37	0.013	0.005	0.014
	User	-	37	0.006	0.002	0.016
	User	-	37	0.001	0.000	0.017
	User	-	37	0.001	0.000	0.017
	User	-	95	0.001	0.001	0.018
	User	-	95	0.002	0.001	0.020
	User	-	100	0.014	0.014	0.033
	User	-	95	0.005	0.005	0.038
	User	-	3/	0.006	0.002	0.040
1 005	User	_	95 60	0.024	0.022	0.063
1.005	User	_	37	0.003	0.000	0.003
	User	_	37	0.001	0.000	0.004
	User	_	95	0.044	0.042	0.045
	User	-	37	0.001	0.000	0.046
	User	-	37	0.001	0.000	0.046
	User	-	37	0.001	0.000	0.047
	User	-	37	0.001	0.000	0.047
	User	-	95	0.006	0.005	0.052
	User	-	100	0.013	0.013	0.066
	User	-	70	0.023	0.016	0.082
	User	_	37	0.023	0.010	0.098
	User	_	95	0.002	0.001	0.105
	User	_	95	0.005	0.005	0.110
	User	-	95	0.005	0.005	0.115
	User	-	95	0.001	0.001	0.115
3.000	User	-	71	0.003	0.002	0.002
	User	-	37	0.007	0.002	0.005
	User	-	37	0.015	0.006	0.010
	User	-	37	0.012	0.004	0.014
3 0.01	User	_	/ L 7 1	0.028	0.020	0.034
5.001	User	_	37	0.007	0.005	0.005
	User	_	37	0.001	0.001	0.007
3.002	User	_	100	0.041	0.041	0.041
	User	-	60	0.005	0.003	0.044
	User	-	60	0.007	0.004	0.049
	User	-	37	0.001	0.000	0.049
	User	-	71	0.032	0.022	0.072
	User	-	37	0.007	0.003	0.074
	User	-	/1	0.006	0.004	0.079
	user	_	е 0 1 Т	0.003	0.002	0.081
	User	_	37	0 001	0.000	0.087
	User	_	37	0.015	0.005	0.093
	User	-	95	0.022	0.021	0.114
3.003	User	-	37	0.001	0.000	0.000
	User	-	100	0.050	0.050	0.051
	User	-	60	0.006	0.004	0.054
	User	-	37	0.001	0.000	0.054
		©1	982-	·2020 Inn	ovyze	
					-	

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Micro			
Date 14/06/2022 18:25	Designed by R.M.				
File Kilternan Planning May 22.MDX	Checked by	Digitigra			
Innovyze	Network 2020.1.3	1			

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	_	37	0.001	0.000	0.055
	User	-	71	0.004	0.003	0.058
	User	-	60	0.008	0.005	0.062
	User	-	37	0.004	0.001	0.064
	User	-	37	0.002	0.001	0.065
3.004	User	-	37	0.001	0.000	0.000
	User	_	37 60	0.003	0.001	0.001
	User	_	60	0.003	0.002	0.007
	User	-	71	0.007	0.005	0.011
	User	-	71	0.024	0.017	0.029
	User	-	71	0.007	0.005	0.033
	User	-	60	0.007	0.004	0.038
	User	-	37	0.008	0.003	0.041
	User	-	92	0.015	0.014	0.055
	User	_	92 100	0.012	0.011	0.000
	User	_	100	0.009	0.009	0.080
3.005	User	_	37	0.004	0.001	0.001
1.006	User	-	60	0.002	0.001	0.001
	User	-	37	0.001	0.000	0.002
	User	-	37	0.001	0.000	0.002
	User	-	37	0.011	0.004	0.006
	User	-	71	0.014	0.010	0.016
	User	_	3/ 71	0.003	0.001	0.017
	User	_	71	0.008	0.005	0.023
	User	_	71	0.005	0.004	0.027
1.007	User	-	71	0.015	0.011	0.011
	User	-	37	0.005	0.002	0.012
	User	-	37	0.017	0.006	0.019
	User	-	71	0.013	0.009	0.028
	User	-	71	0.001	0.000	0.028
	User	_	3/ 71	0.010	0.004	0.032
1.008	User	_	60	0.003	0.002	0.002
	User	-	60	0.007	0.004	0.006
	User	-	60	0.005	0.003	0.009
	User	-	60	0.009	0.006	0.015
	User	-	37	0.000	0.000	0.015
	User	-	37	0.001	0.000	0.015
	User	-	37	0.000	0.000	0.015
	User	_	3/ 71	0.000	0.000	0.015
	User	_	37	0.002	0.001	0.037
	User	-	37	0.002	0.001	0.038
	User	-	37	0.000	0.000	0.038
	User	-	37	0.001	0.001	0.039
	User	-	37	0.001	0.000	0.039
	User	-	95	0.004	0.004	0.042
	User	-	100	0.004	0.004	0.047
	User	_	100	0.014	0.014	0.060
	User	_	70	0.022	0.015	0.086
	User	-	70	0.018	0.012	0.099
	User	-	37	0.018	0.007	0.105
	User	-	37	0.015	0.005	0.111
	User	-	37	0.018	0.007	0.117
	User	-	37	0.011	0.004	0.121
	User	-	70	0.022	0.015	0.136
	user	_	/U 71	0.015	0.011	U.14/ 0 150
	OSEL	-	/ 1	0.004	0.005	0.130
		©1	L982-	2020 Inn	ovyze	

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinano			
File Kilternan Planning May 22.MDX	Checked by	Diamaye			
Innovyze	Network 2020.1.3				

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	Heer		71	0 002	0 001	0 151
	User	_	37	0.002	0.001	0.152
	User	_	95	0.001	0.000	0.152
	User	-	60	0.003	0.002	0.154
	User	-	60	0.003	0.002	0.155
	User	-	60	0.002	0.001	0.157
	User	-	60	0.002	0.001	0.158
	User	-	60	0.002	0.001	0.160
	User	-	71	0.003	0.002	0.162
	User	_	3/	0.014	0.005	0.167
	User	_	37	0.024	0.017	0.184
	User	_	71	0.004	0.003	0.189
	User	_	37	0.001	0.000	0.189
4.000	User	-	71	0.017	0.012	0.012
	User	-	70	0.024	0.017	0.029
	User	-	70	0.001	0.001	0.029
	User	-	37	0.013	0.005	0.034
	User	-	37	0.003	0.001	0.035
	User	-	3/	0.000	0.000	0.035
	User	_	71	0.001	0.000	0.035
	User	_	71	0.000	0.000	0.036
	User	-	37	0.000	0.000	0.036
	User	-	37	0.001	0.000	0.036
	User	-	37	0.000	0.000	0.036
1.009	User	-	60	0.005	0.003	0.003
	User	-	60	0.002	0.001	0.004
	User	-	37	0.001	0.000	0.005
	User	-	95 71	0.031	0.030	0.035
	User	_	71 37	0.058	0.041	0.076
	User	_	37	0.000	0.000	0.077
	User	-	37	0.001	0.001	0.077
	User	-	95	0.000	0.000	0.078
	User	-	95	0.002	0.002	0.080
	User	-	100	0.010	0.010	0.090
	User	-	70	0.018	0.012	0.102
	User	-	37	0.017	0.006	0.109
	User	-	70	0.000	0.000	0.109
	USEI	_	95	0.002	0.001	0.110
	User	_	37	0.001	0.000	0.123
	User	_	37	0.002	0.001	0.124
	User	-	37	0.008	0.003	0.127
	User	-	70	0.015	0.011	0.138
	User	-	100	0.008	0.008	0.145
	User	-	37	0.023	0.009	0.154
	User	-	95	0.020	0.019	0.173
	User	-	3/	0.000	0.000	0.173
	User	_	37	0.000	0.000	0.173
	User	_	95	0.001	0.001	0.174
	User	_	95	0.005	0.004	0.180
	User	-	95	0.005	0.004	0.184
	User	-	95	0.007	0.007	0.190
5.000	User	-	60	0.005	0.003	0.003
	User	-	71	0.024	0.017	0.020
	User	-	71	0.015	0.011	0.031
	User	-	37	0.062	0.023	0.054
	User	-	3/ 71	0.038	0.014	0.068
	OSEL	-	/ 1	0.012	0.008	0.070

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinano			
File Kilternan Planning May 22.MDX	Checked by	Diamaye			
Innovyze	Network 2020.1.3				

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	_	37	0.031	0.012	0.088
	User	_	95	0.014	0.013	0.101
	User	-	95	0.005	0.005	0.106
	User	-	71	0.007	0.005	0.111
	User	-	60	0.002	0.001	0.112
	User	-	71	0.002	0.002	0.114
	User	-	71	0.001	0.000	0.114
	User	-	71	0.001	0.001	0.115
	User	-	37	0.006	0.002	0.117
	User	-	3/	0.002	0.001	0.118
5 001	User	_	71	0.002	0.001	0.119
5.001	User	_	71	0.019	0.014	0.024
	User	_	71	0.010	0.007	0.031
	User	-	37	0.030	0.011	0.042
	User	-	37	0.001	0.000	0.042
5.002	User	-	37	0.001	0.000	0.000
	User	-	37	0.000	0.000	0.000
	User	-	37	0.045	0.017	0.017
	User	-	60	0.002	0.001	0.018
	User	-	60 71	0.002	0.001	0.020
	User	_	/ L 7 1	0.002	0.002	0.022
	User	_	71	0.000	0.000	0.022
	User	_	.37	0.003	0.001	0.023
	User	_	37	0.001	0.000	0.023
	User	-	37	0.001	0.000	0.024
	User	-	70	0.023	0.016	0.040
	User	-	70	0.018	0.013	0.053
	User	-	100	0.010	0.010	0.062
1.010	User	-	60	0.002	0.001	0.001
	User	_	00 37	0.002	0.001	0.003
	User	_	37	0.000	0.000	0.003
	User	_	37	0.001	0.000	0.004
	User	-	37	0.001	0.000	0.004
	User	-	70	0.025	0.017	0.021
	User	-	60	0.002	0.001	0.023
	User	-	60	0.002	0.001	0.024
	User	-	37	0.000	0.000	0.024
	User	-	/1	0.010	0.007	0.031
	User	_	/ L 0.5	0.001	0.000	0.032
	User	_	95	0.001	0.001	0.035
	User	_	37	0.001	0.000	0.036
	User	-	37	0.001	0.000	0.036
	User	-	37	0.001	0.000	0.036
	User	-	70	0.022	0.015	0.052
	User	-	100	0.013	0.013	0.065
	User	-	70	0.013	0.009	0.074
	User	_	3/	0.031	0.011	0.086
	User	_	37	0.019	0.007	0.095
	User	-	71	0.003	0.002	0.102
	User	-	37	0.001	0.000	0.102
1.011	User	-	37	0.010	0.004	0.004
	User	-	37	0.001	0.000	0.004
	User	-	60	0.008	0.005	0.009
	User	-	60	0.006	0.004	0.012
	User	_	/⊥ 71	0.011	0.008	0.020
6,000	User	_	9.5	0.001	0.001	0.008
0.000			20		0.000	

Roger Mullarkey & Associates		Page 13
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Mirro
Date 14/06/2022 18:25	Designed by R.M.	Desinano
File Kilternan Planning May 22.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	_	60	0.035	0.021	0.029
	User	-	71	0.002	0.002	0.031
	User	-	71	0.003	0.002	0.033
	User	-	60	0.010	0.006	0.039
	User	-	60	0.005	0.003	0.042
	User	-	60 60	0.005	0.003	0.045
	USEI User	_	37	0.003	0.003	0.048
	User	_	37	0.001	0.000	0.049
	User	-	37	0.001	0.000	0.049
	User	-	37	0.002	0.001	0.050
	User	-	37	0.006	0.002	0.052
	User	-	37	0.002	0.001	0.053
	User	-	37	0.003	0.001	0.054
	User	_	3/	0.001	0.000	0.054
	User	_	70	0.014	0.010	0.004
	User	_	100	0.015	0.015	0.090
	User	-	100	0.006	0.006	0.096
	User	-	37	0.010	0.004	0.100
	User	-	37	0.025	0.009	0.109
	User	-	95	0.003	0.003	0.112
	User	-	95	0.001	0.001	0.113
	User	_	37	0.021	0.008	0.120
	User	_	37	0.003	0.001	0.122
	User	-	95	0.005	0.004	0.127
7.000	User	-	71	0.021	0.015	0.015
	User	-	60	0.046	0.027	0.042
	User	-	60	0.038	0.023	0.065
	User	-	37	0.006	0.002	0.068
	User	-	3/	0.003	0.001	0.069
	User	_	57	0.015	0.005	0.074
	User	_	100	0.002	0.002	0.079
7.001	User	-	60	0.008	0.005	0.005
	User	-	60	0.007	0.004	0.009
	User	-	37	0.006	0.002	0.012
	User	-	37	0.001	0.001	0.012
	User	-	37	0.003	0.001	0.013
	User	_	37	0.001	0.000	0.014
	User	_	60	0.018	0.003	0.027
	User	-	60	0.016	0.009	0.036
	User	-	60	0.030	0.018	0.054
	User	-	37	0.004	0.001	0.056
	User	-	60	0.017	0.010	0.066
0 000	User	-	71	0.003	0.002	0.068
8.000	User	_	6U 37	0.031	0.019	0.019
	User	_	37	0.122	0.045	0.079
8.001	User	-	37	0.030	0.011	0.011
6.001	User	-	95	0.027	0.026	0.026
	User	-	71	0.018	0.013	0.038
	User	-	71	0.002	0.002	0.040
	User	-	60	0.005	0.003	0.043
	User	-	60 60	0.004	0.002	0.045
	User	_	00 37	0.008	0.005	0.050
	User	-	37	0.002	0.001	0.052
	User	-	37	0.001	0.000	0.052
	User	-	100	0.002	0.002	0.054
		©1	1982-	2020 Inn	ovyze	

· · ·					
Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinado			
File Kilternan Planning May 22.MDX	Checked by	Diamada			
Innovyze	Network 2020.1.3	l			

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	- (ha)
			0.5	0 001	0 001	0.055
	User	_	95 70	0.001	0.001	0.055
	User	_	100	0.012	0.027	0.093
	User	-	100	0.006	0.006	0.100
	User	_	37	0.012	0.004	0.104
	User	_	37	0.013	0.005	0.109
	User	-	95	0.001	0.001	0.110
	User	-	37	0.001	0.000	0.110
	User	-	37	0.001	0.000	0.111
	User	-	60	0.004	0.003	0.114
	User	-	37	0.001	0.001	0.114
	User	-	37	0.001	0.000	0.115
	User	-	71	0.037	0.026	0.141
	User	-	37	0.001	0.001	0.142
6.002	User	-	37	0.002	0.001	0.001
	User	-	95	0.012	0.011	0.012
	User	-	100	0.010	0.007	0.019
	User	_	27	0.001	0.001	0.019
	USEI	_	37	0.004	0.001	0.021
	User	_	95	0.004	0.001	0.022
	User	_	100	0.008	0.008	0.031
	User	_	.37	0.001	0.000	0.031
	User	-	71	0.005	0.004	0.035
	User	_	71	0.002	0.001	0.036
	User	-	71	0.001	0.001	0.037
	User	-	60	0.007	0.004	0.041
	User	-	60	0.002	0.001	0.042
	User	-	71	0.010	0.007	0.049
	User	-	37	0.001	0.000	0.049
	User	-	92	0.047	0.043	0.092
	User	-	92	0.036	0.033	0.125
	User	-	92	0.021	0.019	0.144
	User	-	92	0.004	0.004	0.148
	User	_	92	0.011	0.011	0.139
	USEL User	_	92	0.032	0.029	0.100
	User	_	100	0.000	0.021	0.217
	User	_	100	0.043	0.043	0.260
	User	-	100	0.000	0.000	0.261
	User	_	100	0.000	0.000	0.261
	User	-	85	0.141	0.120	0.381
	User	-	100	0.016	0.016	0.397
6.003	User	-	37	0.009	0.003	0.003
	User	-	37	0.002	0.001	0.004
	User	-	37	0.001	0.001	0.005
	User	-	71	0.001	0.001	0.005
	User	-	71	0.001	0.001	0.006
	User	-	60	0.002	0.001	0.007
	User	-	60	0.003	0.002	0.009
	User	-	37	0.010	0.004	0.013
	User	-	60	0.003	0.002	0.015
	User	_	90 71	0.005	0.005	0.020
	USEL	_	۴0 ۲۱	0.023	0.016	0.030
	User	_	71	0.002	0.001	0.037
	User	_	37	0.011	0.004	0.042
	User	_	100	0.011	0.011	0.053
	User	-	100	0.002	0.002	0.055
	User	-	100	0.001	0.001	0.057
	User	-	100	0.006	0.006	0.063
6.004	User	-	71	0.004	0.003	0.003
		©1	L982-	2020 Inn	ovyze	

Dener Mullenberr C. Decesieter		Dama 1E	
Roger Mullarkey & Associates			
Duncreevan	Kilternan Village		
Kilcock	Stage 3 Planning May'22		
Co. Kildare, Ireland		Mirro	
Date 14/06/2022 18:25	Designed by R.M.	Desinargo	
File Kilternan Planning May 22.MDX	Checked by	Diamage	
Innovyze	Network 2020.1.3		

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	_	71	0.008	0.006	0.009
	User	-	60	0.005	0.003	0.012
	User	-	37	0.003	0.001	0.013
9.000	User	-	37	0.014	0.005	0.005
	User	-	37	0.003	0.001	0.006
	User	-	37	0.004	0.002	0.008
	User	-	95	0.000	0.000	0.008
	User	-	95	0.028	0.026	0.034
	User	-	37	0.001	0.000	0.035
	User	_	100	0.008	0.008	0.043
	USEI User	_	95	0.014	0.010	0.053
9.001	User	_	37	0.003	0.001	0.001
	User	_	95	0.014	0.014	0.015
9.002	User	-	60	0.005	0.003	0.003
	User	-	70	0.028	0.019	0.022
	User	-	37	0.001	0.000	0.023
	User	-	37	0.001	0.001	0.023
	User	-	60	0.005	0.003	0.026
	User	-	95	0.006	0.005	0.032
	User	-	3/	0.002	0.001	0.032
	User	_	37	0.001	0.000	0.033
	User	_	71	0.002	0.001	0.036
	User	_	71	0.001	0.001	0.036
	User	_	100	0.021	0.021	0.058
	User	-	37	0.020	0.007	0.065
	User	-	70	0.005	0.003	0.068
	User	-	95	0.009	0.009	0.077
	User	-	100	0.016	0.016	0.093
10.000	User	-	100	0.002	0.002	0.095
10.000	User	_	70	0.015	0.010	0.010
	USEI User	_	37	0.031	0.022	0.032
	User	_	37	0.002	0.001	0.033
	User	_	37	0.002	0.001	0.034
	User	-	37	0.009	0.003	0.038
	User	-	100	0.008	0.008	0.046
	User	-	95	0.002	0.002	0.048
	User	-	37	0.002	0.001	0.048
	User	-	95	0.001	0.001	0.049
	User	-	37	0.007	0.003	0.052
	User	_	3/ 71	0.001	0.000	0.052
	User	_	60	0.009	0.015	0.072
	User	_	71	0.002	0.001	0.073
	User	_	100	0.006	0.006	0.079
	User	-	100	0.007	0.007	0.087
	User	-	37	0.016	0.006	0.092
	User	-	37	0.002	0.001	0.093
	User	-	37	0.003	0.001	0.094
	User	-	37	0.001	0.001	0.095
	User	_	37	0.001	0.000	0.095
	User	_	37	0.001	0.001	0.090
	User	_	70	0.013	0.009	0.107
	User	-	70	0.000	0.000	0.107
	User	-	100	0.008	0.008	0.115
	User	-	71	0.002	0.001	0.116
	User	-	95	0.000	0.000	0.117
	User	-	95	0.003	0.003	0.119
10.001	User	-	100	0.009	0.009	0.009
		©1	1982-	2020 Inn	ovyze	
Roger Mullarkey & Associates						
------------------------------------	-------------------------	----------	--	--		
Duncreevan	Kilternan Village					
Kilcock	Stage 3 Planning May'22					
Co. Kildare, Ireland		Micro				
Date 14/06/2022 18:25	Designed by R.M.					
File Kilternan Planning May 22.MDX	Checked by	Diamacje				
Innovyze	Network 2020.1.3					

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	-	100	0.010	0.010	0.019
	User	_	70	0.001	0.001	0.020
	User	_	60	0.005	0.004	0.023
	User	_	60	0.010	0.006	0.033
	User	-	95	0.032	0.031	0.064
	User	-	37	0.000	0.000	0.064
	User	-	71	0.011	0.007	0.071
	User	-	37	0.001	0.001	0.072
	User	-	37	0.002	0.001	0.072
	User	_	37	0.015	0.005	0.077
	User	_	100	0.005	0.005	0.088
	User	-	37	0.001	0.000	0.088
	User	-	70	0.026	0.018	0.106
	User	-	70	0.016	0.011	0.117
	User	-	100	0.009	0.009	0.127
	User	-	100	0.012	0.012	0.139
	User	-	95	0.002	0.002	0.141
	User	_	100	0.001	0.001	0.142
10.002	User	_	71	0.020	0.014	0.014
	User	-	37	0.001	0.000	0.014
	User	-	100	0.007	0.007	0.022
	User	-	37	0.003	0.001	0.023
	User	-	37	0.002	0.001	0.023
	User	-	70	0.021	0.015	0.038
	User	_	100	0.014	0.014	0.052
	User	_	95	0.003	0.003	0.057
	User	_	37	0.001	0.000	0.058
	User	-	100	0.029	0.029	0.086
11.000	User	-	37	0.003	0.001	0.001
	User	-	37	0.001	0.000	0.002
	User	-	37	0.014	0.005	0.007
	User	_	37	0.002	0.001	0.007
	User	_	60 60	0.003	0.002	0.009
	User	_	95	0.021	0.020	0.030
	User	-	71	0.012	0.008	0.038
	User	-	70	0.013	0.009	0.047
	User	-	100	0.008	0.008	0.055
	User	-	37	0.013	0.005	0.060
	User	-	71	0.005	0.003	0.064
	User	_	60 60	0.001	0.001	0.064
	User	_	37	0.001	0.000	0.071
11.001	User	-	37	0.002	0.001	0.001
	User	-	60	0.005	0.003	0.004
	User	-	95	0.007	0.007	0.011
	User	-	71	0.003	0.002	0.013
	User	-	100	0.005	0.005	0.018
	user	_	3/ 27	0.001	0.000	U.U18 0 010
	User	_	70	0.014	0.010	0.028
	User	-	100	0.012	0.012	0.040
	User	-	37	0.007	0.003	0.042
	User	-	71	0.003	0.002	0.044
	User	-	71	0.004	0.003	0.047
	User	-	60	0.001	0.001	0.048
	Üser	-	60 27	0.007	0.004	0.052
	user	-	3/	0.001	0.000	0.052
		©1	L982-	2020 Inn	ovyze	

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinado			
File Kilternan Planning May 22.MDX	Checked by	Diamaye			
Innovyze	Network 2020.1.3	•			

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pipe Number	РІМР Туре	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
11.002 User - 37 0.003 0.001 0.002 0.004 User - 37 0.003 0.001 0.002 0.002 9.003 User - 60 0.005 0.003 0.003 User - 37 0.003 0.001 0.006 User - 37 0.003 0.001 0.006 User - 37 0.003 0.001 0.004 User - 71 0.017 0.012 0.027 User - 71 0.017 0.012 0.027 User - 37 0.007 0.002 0.044 User - 37 0.010 0.044 0.077 User - 37 0.010 0.001 0.077 User - 37 0.001 0.001 0.079 User - 37 0.001 0.001 0.062	11 000			0.7	0 007	0 000	0 000
User - 37 0.000 0.001 0.004 User - 100 0.002 0.002 0.003 9.003 User - 60 0.005 0.003 0.003 User - 37 0.002 0.001 0.006 User - 37 0.002 0.001 0.006 User - 71 0.010 0.007 0.014 User - 71 0.011 0.008 0.034 User - 71 0.011 0.008 0.034 User - 37 0.002 0.001 0.044 User - 37 0.002 0.001 0.045 User - 37 0.002 0.001 0.045 User - 37 0.002 0.001 0.045 User - 37 0.002 0.001 0.076 User - 37 0.002 0.001 0.077 User - 71 0.001 0.000 0.079 User - 71 0.001 0.000 0.079 User - 71 0.001 0.000 0.079 User - 71 0.001 0.001 0.082 User - 71 0.001 0.001 0.084 User - 71 0.002 0.001 0.079 User - 71 0.002 0.001 0.082 User - 71 0.001 0.001 0.084 User - 71 0.002 0.001 0.084 User - 71 0.003 0.022 0.29 User - 37 0.001 0.000 0.029 User - 37 0.001 0.000 0.029 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.054 User - 37 0.004 0.004 0.004 0.064 User - 37 0.004 0.004 0.004 User - 37 0.004 0.001 0.054 User - 37 0.004 0.001 0.054 User - 37 0.004 0.004 0.004 User - 37 0.006 0.002 0.071 User - 37 0.004 0.001 0.072 6.006 User - 60 0.010 0.006 0.072 User - 37 0.004 0.001 0.072 6.006 User - 60 0.021 0.013 0.013 User - 37 0.004 0.0001 0.072 User - 37 0.007 0.002 0.077 User - 37 0.007 0.00	11.002	User	-	3/	0.007	0.002	0.002
User - 100 0.002 0.002 0.002 9.004 User - 60 0.005 0.003 0.006 User - 37 0.008 0.003 0.006 User - 37 0.002 0.001 0.006 User - 71 0.010 0.007 0.014 User - 71 0.017 0.012 0.027 User - 71 0.017 0.012 0.027 User - 71 0.011 0.008 0.034 User - 71 0.011 0.008 0.034 User - 37 0.007 0.002 0.044 User - 37 0.007 0.002 0.077 User - 37 0.001 0.004 0.076 User - 37 0.002 0.001 0.078 User - 37 0.002 0.001 0.078 User - 37 0.002 0.001 0.079 User - 37 0.002 0.001 0.079 User - 37 0.002 0.001 0.079 User - 71 0.001 0.000 0.079 User - 71 0.001 0.000 0.079 User - 71 0.001 0.001 0.079 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.084 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.084 User - 71 0.001 0.001 0.083 User - 71 0.003 0.002 0.021 User - 71 0.023 0.016 0.273 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 37 0.003 0.001 0.054 User - 37 0.003 0.001 0.054 User - 37 0.004 0.004 0.064 User - 71 0.014 0.010 0.077 User - 71 0.016 0.011 0.064 User - 71 0.016 0.011 0.064 User - 71 0.016 0.011 0.064 User - 71 0.016 0.012 0.021 User - 37 0.006 0.002 0.071 User - 71 0.016 0.012 0.021 User - 37 0.006 0.002 0.071 User - 71 0.016 0.012 0.022 User - 37 0.006 0.002 0.071 User - 71 0.016 0.012 0.022 User - 71 0.016 0.010 0.070 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.024 User - 71 0.016 0.010 0.070 User - 71 0.016 0.010 0.070 User - 71 0.016 0.002 0.071 User - 71 0.016 0.010 0.070 User - 71		USEL	_	37	0.003	0.001	0.004
9.003 User - 9.004 User - 60 0.002 0.003 0.006 User - 37 0.002 0.001 0.006 User - 37 0.002 0.001 0.006 User - 37 0.001 0.007 0.014 User - 71 0.017 0.012 0.027 User - 71 0.011 0.008 0.042 User - 37 0.007 0.007 0.042 User - 37 0.007 0.007 0.052 User - 37 0.010 0.004 0.077 User - 37 0.002 0.001 0.079 User - 37 0.001 0.003 0.082 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.083 <td< td=""><td></td><td>User</td><td>_</td><td>100</td><td>0.000</td><td>0.000</td><td>0.004</td></td<>		User	_	100	0.000	0.000	0.004
9.004 User - 60 0.005 0.003 0.003 User - 37 0.002 0.001 0.006 User - 71 0.017 0.012 0.027 User - 71 0.017 0.012 0.027 User - 71 0.011 0.008 0.034 User - 71 0.011 0.008 0.034 User - 71 0.011 0.008 0.034 User - 37 0.002 0.001 0.045 User - 37 0.002 0.001 0.045 User - 70 0.029 0.020 0.072 User - 70 0.029 0.020 0.072 User - 37 0.001 0.004 0.001 0.077 User - 37 0.001 0.001 0.077 User - 71 0.002 0.001 0.078 User - 71 0.003 0.001 0.079 User - 71 0.001 0.001 0.079 User - 71 0.001 0.001 0.079 User - 71 0.001 0.001 0.079 User - 71 0.004 0.003 0.082 User - 71 0.004 0.003 0.082 User - 71 0.004 0.003 0.082 User - 71 0.001 0.001 0.079 User - 71 0.004 0.003 0.082 User - 71 0.001 0.001 0.079 User - 71 0.001 0.001 0.079 User - 71 0.001 0.001 0.083 User - 71 0.002 0.001 0.083 User - 71 0.003 0.043 0.131 9.005 User - 71 0.003 0.002 0.029 User - 71 0.003 0.002 0.029 User - 71 0.003 0.002 0.021 User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.029 User - 37 0.001 0.001 0.042 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 37 0.002 0.001 0.055 User - 37 0.002 0.001 0.054 User - 37 0.004 0.004 0.066 User - 37 0.002 0.001 0.054 User - 37 0.004 0.004 0.064 User - 37 0.004 0.001 0.054 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.024	9 003	User	_	95	0.002	0.002	0.002
User - 37 0.008 0.003 0.006 User - 37 0.002 0.001 0.006 User - 37 0.003 0.001 0.006 User - 71 0.017 0.012 0.027 User - 71 0.011 0.008 0.034 User - 37 0.007 0.002 0.001 User - 37 0.002 0.001 0.045 User - 37 0.002 0.001 0.076 User - 37 0.002 0.001 0.077 User - 37 0.001 0.001 0.079 User - 71 0.001 0.001 0.083 User - 71 0.004 0.003 0.082 User - 71 0.004 0.004 0.084 User - 71 0.002 0.	9.004	User	_	60	0.005	0.003	0.002
User - 37 0.002 0.001 0.006 User - 37 0.013 0.001 0.006 User - 71 0.017 0.012 0.027 User - 71 0.011 0.008 0.042 User - 37 0.007 0.002 0.044 User - 37 0.002 0.010 0.045 User - 37 0.002 0.020 0.072 User - 37 0.010 0.001 0.076 User - 37 0.002 0.001 0.076 User - 37 0.001 0.001 0.078 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.084 User - 71 0.006 0.002 0.029 User - 71 0.006 0.	5.001	User	_	37	0.008	0.003	0.006
User - 37 0.003 0.001 0.008 User - 71 0.010 0.007 0.014 User - 71 0.011 0.008 0.034 User - 60 0.013 0.002 0.044 User - 37 0.007 0.002 0.044 User - 37 0.007 0.002 0.072 User - 37 0.010 0.004 0.076 User - 37 0.001 0.001 0.079 User - 37 0.001 0.001 0.079 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.084 User - 71 0.002 0.027 0.027 User - 71 0.023 0.		User	_	37	0.002	0.001	0.006
User - 71 0.010 0.007 0.014 User - 71 0.017 0.012 0.027 User - 71 0.013 0.008 0.034 User - 37 0.007 0.002 0.044 User - 37 0.002 0.001 0.045 User - 70 0.029 0.001 0.072 User - 37 0.004 0.001 0.077 User - 37 0.001 0.000 0.079 User - 37 0.001 0.001 0.079 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.084 User - 71 0.002 0.006 0.006 User - 71 0.023 0.016 0.027 User - 37 0.002 0.		User	_	37	0.003	0.001	0.008
User - 71 0.017 0.012 0.027 User - 71 0.011 0.008 0.034 User - 37 0.007 0.002 0.044 User - 37 0.007 0.002 0.044 User - 37 0.002 0.001 0.045 User - 37 0.002 0.001 0.076 User - 37 0.002 0.001 0.077 User - 37 0.003 0.001 0.079 User - 37 0.004 0.001 0.079 User - 71 0.001 0.001 0.082 User - 71 0.006 0.004 0.082 User - 71 0.006 0.001 0.022 User - 71 0.002 0.001 0.022 User - 37 0.002 0.		User	-	71	0.010	0.007	0.014
User - 71 0.011 0.008 0.032 User - 37 0.007 0.002 0.044 User - 37 0.002 0.001 0.045 User - 100 0.007 0.002 0.001 0.045 User - 37 0.004 0.001 0.072 User - 37 0.003 0.001 0.079 User - 37 0.003 0.001 0.079 User - 71 0.001 0.003 0.682 User - 71 0.001 0.001 0.083 User - 71 0.001 0.004 0.083 User - 71 0.001 0.001 0.083 User - 71 0.023 0.016 0.027 User - 37 0.001 0.000 0.029 User - 37 0		User	-	71	0.017	0.012	0.027
User - 60 0.013 0.008 0.044 User - 37 0.007 0.002 0.001 User - 70 0.029 0.020 0.072 User - 70 0.029 0.020 0.072 User - 37 0.004 0.001 0.076 User - 37 0.002 0.001 0.077 User - 37 0.003 0.001 0.079 User - 71 0.004 0.001 0.079 User - 71 0.001 0.001 0.084 User - 71 0.006 0.004 0.088 User - 71 0.006 0.004 0.088 User - 71 0.006 0.004 0.088 User - 71 0.001 0.001 0.084 User - 71 0.006 0.004 0.088 User - 71 0.006 0.004 0.088 User - 71 0.006 0.004 0.088 User - 71 0.023 0.016 0.027 User - 37 0.001 0.001 0.029 User - 37 0.001 0.001 0.029 User - 37 0.002 0.001 0.055 User - 71 0.003 0.002 0.229 User - 37 0.002 0.001 0.055 User - 37 0.004 0.004 0.064 User - 100 0.073 0.073 0.078 6.005 User - 71 0.016 0.011 0.005 User - 37 0.006 0.002 0.021 User - 37 0.004 0.004 0.068 User - 37 0.004 0.004 0.068 User - 37 0.004 0.004 0.068 User - 71 0.016 0.011 0.015 User - 37 0.004 0.000 0.022 User - 37 0.004 0.001 0.073 0.073 6.005 User - 71 0.016 0.011 0.018 User - 71 0.016 0.012 0.021 User - 37 0.004 0.000 0.022 User - 71 0.016 0.012 0.022 User - 71 0.016 0.010 0.072 6.006 User - 71 0.016 0.012 0.022 User - 71 0.016 0.002 0.005		User	-	71	0.011	0.008	0.034
User - 37 0.007 0.002 0.045 User - 100 0.007 0.007 0.052 User - 37 0.010 0.001 0.072 User - 37 0.010 0.001 0.076 User - 37 0.002 0.001 0.077 User - 37 0.003 0.001 0.079 User - 37 0.001 0.000 0.079 User - 71 0.001 0.001 0.082 User - 71 0.001 0.001 0.083 User - 71 0.006 0.004 0.082 User - 71 0.006 0.006 0.002 User - 71 0.002 0.010 0.022 User - 37 0.002 0.001 0.052 User - 37 0.002 0		User	-	60	0.013	0.008	0.042
User - 37 0.002 0.001 0.045 User - 70 0.029 0.020 0.72 User - 37 0.004 0.001 0.77 User - 37 0.002 0.001 0.77 User - 37 0.003 0.001 0.779 User - 37 0.001 0.000 0.779 User - 71 0.001 0.001 0.079 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.084 User - 71 0.003 0.002 0.006 User - 71 0.003 0.002 0.006 User - 71 0.023 0.016 0.227 User - 71 0.003 0.002 0.029 User - 37 0.001 0.001 0.042 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.054 User - 37 0.001 0.001 0.054 User - 37 0.002 0.001 0.054 User - 37 0.002 0.001 0.054 User - 37 0.004 0.004 0.004 User - 37 0.006 0.002 0.071 9.006 User - 37 0.004 0.004 0.068 User - 37 0.006 0.002 0.071 9.006 User - 37 0.006 0.002 0.071 9.006 User - 37 0.006 0.002 0.071 9.006 User - 37 0.006 0.002 0.071 User - 71 0.014 0.010 0.054 User - 37 0.006 0.002 0.071 9.006 User - 37 0.004 0.004 0.004 User - 100 0.073 0.073 0.078 6.005 User - 71 0.014 0.015 0.036 User - 71 0.016 0.010 0.072 0.006 0.002 0.221 User - 71 0.016 0.010 0.006 0.042 User - 71 0.016 0.010 0.072 6.006 User - 71 0.010 0.006 0.042 User - 71 0.010 0.007 0.072 6.006 User - 71 0.010 0.006 0.070 User - 71 0.026 0.019 0.060 User - 71 0.026 0.019 0.022 User - 71 0.016 0.010 0.072 6.007 User - 71 0.016 0.010 0.072 6.007 User - 71 0.016 0.010 0.070 User - 71 0.016 0.000 0.070 User - 71 0.016 0.000 0.070 User - 71 0.016 0.00		User	-	37	0.007	0.002	0.044
User - 100 0.007 0.020 0.072 User - 37 0.010 0.004 0.071 User - 37 0.002 0.001 0.077 User - 37 0.003 0.001 0.079 User - 37 0.001 0.000 0.079 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.083 User - 71 0.006 0.004 0.083 User - 71 0.006 0.004 0.083 User - 71 0.006 0.006 0.006 User - 71 0.023 0.016 0.027 User - 77 0.001 0.002 0.021 User - 37 0.022 0.001 0.052 User - 37 0.022 0		User	-	37	0.002	0.001	0.045
User - 70 0.029 0.020 0.072 User - 37 0.010 0.004 0.001 User - 37 0.002 0.001 0.078 User - 37 0.001 0.000 0.079 User - 71 0.001 0.000 0.079 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.084 User - 71 0.006 0.004 0.008 User - 71 0.006 0.004 0.088 User - 71 0.006 0.004 0.088 User - 71 0.001 0.001 0.084 User - 60 0.009 0.006 0.006 User - 71 0.023 0.016 0.027 User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.029 User - 37 0.001 0.001 0.042 User - 37 0.002 0.001 0.055 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 37 0.001 0.000 0.054 User - 37 0.001 0.000 0.054 User - 37 0.001 0.001 0.054 User - 71 0.014 0.010 0.054 User - 71 0.014 0.010 0.054 User - 71 0.014 0.010 0.064 User - 71 0.014 0.005 0.005 User - 37 0.006 0.002 0.071 9.006 User - 71 0.014 0.005 0.005 User - 37 0.004 0.004 0.068 User - 37 0.006 0.002 0.071 9.006 User - 71 0.014 0.010 0.054 User - 37 0.004 0.004 0.068 User - 71 0.014 0.010 0.054 User - 71 0.014 0.010 0.054 User - 71 0.014 0.005 0.005 User - 71 0.014 0.005 0.005 User - 71 0.016 0.011 0.073 0.073 0.073 6.005 User - 71 0.016 0.011 0.018 User - 71 0.016 0.011 0.018 User - 71 0.016 0.011 0.018 User - 71 0.016 0.011 0.019 User - 71 0.016 0.011 0.019 User - 71 0.016 0.011 0.019 User - 71 0.026 0.019 0.000 User - 37 0.004 0.000 0.070 User - 37 0.004 0.001 0.072 6.006 User - 71 0.016 0.012 0.024 User - 71 0.026 0.019 0.000 User - 71 0.026 0.019 0.000 User - 71 0.026 0.019 0.000 User - 71 0.016 0.012 0.024 User - 71 0.017 0.007 0.002 0.029 User - 71 0.014 0.010 0.073 0.073 0.079 User - 71 0.014 0.010 0.070 User - 71 0.014 0.010 0.070 User - 71 0.017 0.022 0.029 User - 71 0.016 0.012 0.024 User - 71 0.017 0.022 0.029 User - 71 0.014 0.		User	-	100	0.007	0.007	0.052
User - 37 0.010 0.004 0.076 User - 37 0.002 0.001 0.077 User - 37 0.003 0.001 0.079 User - 71 0.004 0.003 0.082 User - 71 0.004 0.003 0.082 User - 71 0.001 0.001 0.083 User - 71 0.006 0.004 0.083 User - 71 0.003 0.002 0.027 User - 71 0.003 0.002 0.029 User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.022 User - 37 0.001 0.001 0.042 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.054 User - 37 0.002 0.001 0.054 User - 37 0.003 0.001 0.054 User - 71 0.014 0.000 0.029 User - 71 0.014 0.000 0.024 User - 71 0.014 0.000 0.024 User - 37 0.004 0.004 0.064 User - 37 0.006 0.002 0.071 9.006 User - 71 0.014 0.005 0.005 User - 71 0.016 0.010 0.054 User - 71 0.016 0.011 0.054 User - 71 0.016 0.012 0.071 9.006 User - 71 0.010 0.007 0.077 6.005 User - 71 0.010 0.007 0.007 User - 71 0.010 0.000 0.022 User - 37 0.006 0.002 0.021 User - 37 0.006 0.002 0.021 User - 71 0.016 0.011 0.036 User - 71 0.016 0.011 0.037 0.055 User - 71 0.010 0.006 0.022 User - 71 0.010 0.006 0.022 User - 71 0.010 0.006 0.022 User - 71 0.010 0.007 0.007 User - 71 0.010 0.006 0.022 User - 71 0.010 0.000 0.000 User - 37 0.001 0.006 0.022 User - 71 0.010 0.000 0.000 User - 37 0.001 0.000 0.000 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.022 User - 71 0.057 0.041 0.079 User - 37 0.006 0.002 0.027 User - 37 0.006 0.002 0.027 User - 37 0.006 0.002 0.027 User - 71 0.057 0.041 0.079 User - 37 0.006 0.002 0.005		User	-	70	0.029	0.020	0.072
User - 37 0.004 0.001 0.077 User - 37 0.002 0.001 0.078 User - 37 0.003 0.001 0.079 User - 71 0.004 0.003 0.082 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.084 User - 71 0.006 0.004 0.088 User - 60 0.009 0.005 0.011 User - 60 0.009 0.005 0.011 User - 71 0.003 0.002 0.029 User - 37 0.001 0.010 0.029 User - 37 0.001 0.010 0.029 User - 37 0.002 0.001 0.055 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.055 User - 37 0.001 0.001 0.053 User - 37 0.001 0.001 0.054 User - 37 0.001 0.001 0.055 User - 37 0.002 0.001 0.055 User - 37 0.003 0.002 0.001 User - 71 0.014 0.010 0.054 User - 37 0.006 0.002 0.071 9.006 User - 37 0.016 0.002 0.071 9.006 User - 37 0.016 0.002 0.071 9.006 User - 71 0.014 0.010 0.064 User - 100 0.004 0.004 0.068 User - 37 0.001 0.005 User - 71 0.016 0.011 0.054 User - 37 0.006 0.002 0.071 9.006 User - 37 0.016 0.002 0.071 9.006 User - 37 0.016 0.010 0.073 0.073 0.73 6.005 User - 71 0.016 0.011 0.018 User - 37 0.041 0.015 0.035 User - 71 0.016 0.011 0.017 User - 37 0.004 0.006 0.002 0.021 User - 37 0.004 0.006 0.002 0.021 User - 71 0.016 0.011 0.018 User - 60 0.010 0.006 0.042 User - 71 0.016 0.019 0.060 User - 37 0.001 0.000 User - 37 0.001 0.000 User - 71 0.016 0.019 0.000 User - 37 0.004 0.001 0.72 6.006 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.022 User - 71 0.016 0.012 0.024 User - 71 0.014 0.0100 0.075 User - 71 0.014 0.0100 0.075 User - 71 0.014 0.0100		User	-	37	0.010	0.004	0.076
User - 37 0.002 0.001 0.078 User - 37 0.003 0.001 0.079 User - 71 0.004 0.003 0.082 User - 71 0.001 0.001 0.083 User - 71 0.006 0.004 0.088 User - 71 0.006 0.004 0.088 User - 100 0.043 0.043 0.131 9.005 User - 60 0.009 0.005 0.011 User - 71 0.023 0.016 0.027 User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.055 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.055 User - 37 0.002 0.001 0.055 User - 37 0.002 0.001 0.055 User - 71 0.014 0.010 0.055 User - 71 0.014 0.001 0.054 User - 71 0.014 0.001 0.054 User - 37 0.002 0.001 0.055 User - 37 0.002 0.001 0.055 User - 71 0.014 0.000 0.054 User - 71 0.014 0.000 0.054 User - 71 0.014 0.000 0.054 User - 71 0.014 0.001 0.054 User - 71 0.014 0.005 0.005 User - 37 0.002 0.001 0.054 User - 71 0.014 0.005 0.005 User - 71 0.016 0.011 0.018 User - 71 0.016 0.012 0.021 User - 71 0.016 0.012 0.022 User - 71 0.016 0.012 0.022 User - 71 0.010 0.006 0.022 User - 71 0.010 0.006 0.022 User - 71 0.010 0.006 0.022 User - 71 0.014 0.010 0.007 User - 71 0.016 0.012 0.024 User - 71 0.014 0.0100 0.079 User - 71 0.057 0.041 0.799 User - 7		User	-	37	0.004	0.001	0.077
User - 37 0.001 0.000 0.079 User - 71 0.004 0.003 0.082 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.084 User - 71 0.006 0.004 0.088 User - 100 0.43 0.43 0.131 9.005 User - 60 0.009 0.006 0.006 User - 71 0.023 0.016 0.027 User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.029 User - 37 0.006 0.001 0.055 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.055 User - 71 0.014 0.010 0.054 User - 37 0.002 0.001 0.054 User - 71 0.014 0.010 0.054 User - 37 0.004 0.004 0.068 User - 37 0.004 0.004 0.068 User - 37 0.014 0.010 0.054 User - 37 0.002 0.001 0.054 User - 37 0.002 0.001 0.054 User - 37 0.003 0.001 0.054 User - 37 0.004 0.004 0.004 User - 37 0.004 0.004 0.068 User - 37 0.014 0.010 0.064 User - 71 0.014 0.010 0.064 User - 71 0.014 0.010 0.064 User - 37 0.014 0.005 0.005 User - 37 0.014 0.005 0.005 User - 71 0.014 0.000 0.007 9.006 User - 71 0.014 0.000 0.007 User - 71 0.016 0.011 0.018 User - 37 0.004 0.004 0.004 User - 37 0.004 0.007 0.007 User - 71 0.016 0.011 0.018 User - 37 0.041 0.015 0.035 User - 71 0.016 0.011 0.018 User - 37 0.004 0.004 0.022 User - 37 0.041 0.015 0.035 User - 71 0.016 0.012 0.021 User - 37 0.041 0.015 0.035 User - 71 0.026 0.019 0.060 User - 37 0.004 0.004 0.022 User - 71 0.026 0.019 0.060 User - 37 0.004 0.004 0.022 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.022 User - 71 0.014 0.010 0.033 User - 71 0.014 0.010 0.033 User - 71 0.014 0.010 0.033 User - 71 0.057 0.041 0.073 User - 71 0.057 0.041 0.073 User - 71 0.057 0.041 0.073		User	-	37	0.002	0.001	0.078
User - 71 0.004 0.003 0.082 User - 71 0.001 0.001 0.083 User - 71 0.001 0.001 0.083 User - 71 0.006 0.004 0.088 User - 100 0.043 0.043 0.131 9.005 User - 60 0.009 0.005 0.011 User - 71 0.023 0.016 0.027 User - 71 0.003 0.002 0.029 User - 37 0.001 0.010 0.042 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 37 0.004 0.001 0.054 User - 37 0.004 0.001 0.054 User - 37 0.004 0.001 0.054 User - 37 0.002 0.001 0.054 User - 37 0.004 0.001 0.054 User - 71 0.014 0.010 0.064 User - 37 0.002 0.001 0.054 User - 37 0.006 0.002 0.071 9.006 User - 37 0.014 0.015 0.005 User - 37 0.014 0.010 0.064 User - 71 0.014 0.010 0.064 User - 37 0.006 0.002 0.071 9.006 User - 71 0.014 0.010 0.064 User - 71 0.016 0.011 0.054 User - 37 0.006 0.002 0.071 9.006 User - 71 0.010 0.007 0.078 6.005 User - 71 0.010 0.007 0.077 User - 71 0.010 0.007 0.077 0.06 0.021 0.010 User - 37 0.041 0.015 0.036 User - 37 0.041 0.015 0.036 User - 37 0.041 0.015 0.036 User - 71 0.016 0.011 0.018 User - 37 0.041 0.015 0.036 User - 71 0.016 0.011 0.0172 0.064 User - 37 0.041 0.015 0.036 User - 71 0.026 0.019 0.064 User - 37 0.041 0.010 0.070 User - 37 0.041 0.010 0.070 User - 71 0.016 0.012 0.024 User - 71 0.016 0.013 0.033 User - 71 0.016 0.012 0.024 User - 71 0.016 0.013 0.033 User - 71 0.016 0.013 0.033 User - 71 0.016 0.013 0.022 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 User - 71 0.057 0.041 0.079		User	-	3/	0.003	0.001	0.079
User - 71 0.001 0.003 0.082 User - 71 0.001 0.001 0.083 User - 71 0.006 0.004 0.088 User - 100 0.043 0.043 0.131 9.005 User - 60 0.009 0.005 0.011 User - 71 0.023 0.016 0.027 User - 71 0.023 0.016 0.027 User - 37 0.001 0.000 0.029 User - 37 0.006 0.002 0.031 User - 37 0.025 0.009 0.051 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 37 0.001 0.000 0.054 User - 37 0.001 0.001 0.054 User - 37 0.004 0.004 0.064 User - 37 0.004 0.004 0.064 User - 37 0.004 0.004 0.064 User - 37 0.014 0.010 0.068 User - 37 0.014 0.005 0.005 User - 71 0.014 0.007 0.078 6.005 User - 71 0.014 0.015 0.036 User - 37 0.006 0.002 0.021 User - 71 0.016 0.011 0.018 User - 71 0.016 0.011 0.018 User - 71 0.016 0.010 0.073 0.073 0.073 0.73 0.078 6.005 User - 71 0.016 0.011 0.018 User - 71 0.016 0.011 0.018 User - 71 0.016 0.010 0.022 User - 71 0.016 0.019 0.064 User - 37 0.004 0.004 0.064 User - 37 0.004 0.004 0.064 User - 71 0.016 0.019 0.022 User - 71 0.026 0.019 0.022 User - 71 0.016 0.001 0.072 0.026 0.021 0.021 User - 71 0.026 0.019 0.022 User - 71 0.016 0.011 0.072 6.006 User - 37 0.004 0.001 0.72 0.024 User - 71 0.016 0.012 0.024 User - 71 0.016 0.002 0.027 User - 71 0.016 0.002 0.027 User - 71 0.016 0.002 0.027 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.024 User - 71 0.016 0.002 0.027 User - 71 0.016 0.002 0.027 User - 71 0.057 0.041 0.079 0.057 User - 60 0.008 0.005 0.005 User - 71 0.057 0.041 0.079		User	-	3/	0.001	0.000	0.079
User - 71 0.001 0.001 0.084 User - 71 0.006 0.004 0.088 User - 100 0.043 0.043 0.131 9.005 User - 60 0.009 0.006 0.001 User - 71 0.023 0.016 0.027 User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.029 User - 37 0.001 0.000 0.029 User - 37 0.002 0.001 0.042 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 37 0.001 0.001 0.054 User - 37 0.002 0.001 0.054 User - 37 0.004 0.004 0.064 User - 37 0.002 0.001 0.054 User - 37 0.002 0.001 0.054 User - 37 0.004 0.004 0.068 User - 37 0.014 0.010 0.064 User - 37 0.014 0.010 0.064 User - 37 0.014 0.005 0.005 User - 100 0.073 0.073 0.078 6.005 User - 71 0.016 0.011 0.018 User - 37 0.006 0.002 0.021 User - 37 0.006 0.002 0.021 User - 37 0.004 0.004 0.068 User - 37 0.004 0.004 0.068 User - 71 0.016 0.011 0.018 User - 37 0.006 0.002 0.021 User - 71 0.016 0.011 0.018 User - 37 0.004 0.004 0.064 User - 37 0.004 0.005 0.005 User - 71 0.016 0.011 0.018 User - 37 0.004 0.010 0.020 User - 71 0.016 0.012 0.021 User - 37 0.004 0.010 0.006 0.042 User - 71 0.016 0.010 0.006 0.042 User - 71 0.016 0.010 0.006 0.042 User - 71 0.026 0.019 0.064 User - 60 0.004 0.064 User - 71 0.026 0.019 0.020 User - 71 0.010 0.000 0.070 User - 71 0.026 0.019 User - 71 0.010 0.000 0.070 User - 71 0.010 0.000 0.000 User - 700 0.000 0.000 User - 700 0.000 0.000 User -		User	-	/1	0.004	0.003	0.082
User - 71 0.001 0.001 0.004 User - 71 0.006 0.004 0.088 User - 60 0.009 0.006 0.006 User - 60 0.009 0.005 0.011 User - 71 0.023 0.016 0.027 User - 71 0.023 0.016 0.027 User - 37 0.001 0.000 0.029 User - 37 0.002 0.002 0.031 User - 37 0.025 0.009 0.051 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 71 0.014 0.010 0.064 User - 71 0.014 0.010 0.064 User - 37 0.006 0.002 0.071 9.006 User - 37 0.014 0.005 0.005 User - 71 0.014 0.007 0.078 6.005 User - 71 0.014 0.010 0.078 User - 71 0.016 0.001 0.018 User - 71 0.016 0.001 0.018 User - 37 0.001 0.007 0.078 6.005 User - 71 0.014 0.010 0.064 User - 71 0.016 0.011 0.018 User - 37 0.006 0.002 0.021 User - 37 0.006 0.002 0.021 User - 71 0.016 0.010 0.078 6.005 User - 71 0.016 0.011 0.018 User - 71 0.016 0.001 0.072 6.005 User - 71 0.016 0.001 0.006 User - 71 0.016 0.001 0.072 6.006 User - 37 0.041 0.015 0.036 User - 71 0.026 0.002 0.021 User - 71 0.026 0.019 0.060 User - 71 0.026 0.019 0.060 User - 71 0.026 0.019 0.060 User - 71 0.010 0.006 0.070 User - 71 0.010 0.007 0.077 User - 71 0.010 0.000 0.070 User - 71 0.010 0.006 0.002 User - 71 0.010 0.006 0.002 User - 71 0.010 0.006 0.002 0.021 User - 71 0.016 0.011 0.013 0.039 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.024 User - 71 0.016 0.013 0.013 User - 71 0.016 0.002 0.027 User - 71 0.014 0.010 0.039 User - 71 0.014 0.010 0.039 User - 71 0.006 0.002 0.		User	-	71	0.001	0.001	0.083
User - 100 0.043 0.004 0.006 User - 60 0.009 0.006 0.007 User - 71 0.023 0.016 0.027 User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.042 User - 37 0.002 0.010 0.042 User - 37 0.002 0.010 0.042 User - 37 0.025 0.009 0.051 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 37 0.001 0.001 0.054 User - 71 0.014 0.010 0.064 User - 37 0.004 0.004 0.068 User - 100 0.004 0.004 0.068 User - 100 0.073 0.073 0.071 9.006 User - 71 0.016 0.011 0.018 User - 71 0.016 0.012 0.021 User - 71 0.016 0.012 0.021 User - 71 0.016 0.013 0.036 User - 71 0.016 0.014 0.015 0.036 User - 71 0.016 0.010 0.007 User - 71 0.016 0.010 0.006 0.042 User - 71 0.016 0.011 0.018 User - 71 0.016 0.012 0.021 User - 71 0.016 0.012 0.021 User - 71 0.016 0.010 0.006 User - 71 0.026 0.019 0.060 User - 71 0.026 0.019 0.060 User - 71 0.026 0.019 0.060 User - 71 0.010 0.000 0.070 User - 71 0.010 0.000 0.070 User - 71 0.010 0.000 0.070 User - 71 0.016 0.012 0.024 User - 71 0.016 0.010 0.006 User - 71 0.016 0.010 0.007 User - 71 0.016 0.010 0.070 User - 71 0.016 0.010 0.070 User - 71 0.016 0.010 0.070 User - 71 0.016 0.012 0.024 User - 71 0.016 0.002 0.027 User - 71 0.016 0.002 0		User	_	71	0.001	0.001	0.089
9.005 User - 60 0.009 0.006 0.006 User - 71 0.023 0.016 0.027 User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.029 User - 37 0.006 0.002 0.031 User - 37 0.025 0.009 0.051 User - 37 0.025 0.009 0.051 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.054 User - 37 0.001 0.001 0.054 User - 71 0.014 0.010 0.064 User - 71 0.014 0.010 0.064 User - 37 0.006 0.002 0.071 9.006 User - 71 0.014 0.005 0.005 User - 100 0.073 0.073 0.78 6.005 User - 71 0.016 0.011 0.058 User - 71 0.016 0.002 0.071 9.006 User - 71 0.016 0.011 0.054 User - 71 0.016 0.002 0.071 9.006 User - 71 0.016 0.011 0.057 User - 71 0.016 0.002 0.071 9.006 User - 71 0.016 0.011 0.018 User - 71 0.016 0.012 0.021 User - 71 0.010 0.006 0.022 0.021 User - 71 0.026 0.019 0.060 User - 60 0.010 0.006 0.072 0.021 User - 71 0.026 0.019 0.060 User - 71 0.010 0.006 0.072 6.006 User - 60 0.021 0.013 0.013 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.024 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.027		USEL	_	100	0.000	0.004	0.000
J.003 User - 60 0.009 0.005 0.011 User - 71 0.023 0.016 0.027 User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.029 User - 37 0.006 0.002 0.031 User - 37 0.002 0.001 0.042 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 37 0.004 0.004 0.064 User - 37 0.014 0.010 0.064 User - 37 0.014 0.005 0.005 User - 37 0.016 0.011 0.018 User - 37 0.	9 005	User	_	100 60	0.045	0.045	0.151
USEr - 71 0.023 0.016 0.027 USEr - 71 0.003 0.002 0.029 USEr - 37 0.001 0.000 0.029 USEr - 37 0.006 0.002 0.031 USEr - 37 0.002 0.001 0.042 USEr - 37 0.002 0.001 0.052 USEr - 37 0.002 0.001 0.052 USEr - 37 0.002 0.001 0.054 USEr - 37 0.003 0.001 0.054 USEr - 37 0.004 0.004 0.064 USEr - 37 0.014 0.005 0.005 USEr - 37 0.014 0.007 0.007 USEr - 37 0.010 0.007 0.007 USEr - 37 0.010 0.	5.005	User	_	60	0.009	0.000	0.000
User - 71 0.003 0.002 0.029 User - 37 0.001 0.000 0.029 User - 37 0.006 0.002 0.031 User - 37 0.025 0.009 0.051 User - 37 0.002 0.001 0.052 User - 37 0.002 0.001 0.053 User - 37 0.002 0.001 0.054 User - 37 0.001 0.004 0.064 User - 37 0.001 0.004 0.064 User - 37 0.014 0.010 0.064 User - 37 0.014 0.005 0.005 User - 37 0.010 0.007 0.071 9.006 User - 71 0.016 0.011 0.018 User - 37 0.		User	_	71	0.023	0.016	0.027
User - 37 0.001 0.000 0.029 User - 37 0.006 0.002 0.031 User - 100 0.010 0.010 0.042 User - 37 0.025 0.009 0.051 User - 37 0.002 0.001 0.052 User - 37 0.003 0.001 0.054 User - 71 0.014 0.010 0.064 User - 71 0.014 0.000 0.064 User - 37 0.006 0.002 0.071 9.006 User - 37 0.014 0.005 0.005 User - 100 0.073 0.073 0.078 6.005 User - 71 0.016 0.011 0.018 User - 37 0.006 0.002 0.021 User - 37 0.041 0.015 0.066 User - 37 0.041 0.015 0.036 User - 71 0.016 0.011 0.018 User - 37 0.041 0.015 0.066 User - 71 0.026 0.019 0.060 User - 37 0.004 0.004 0.064 User - 71 0.026 0.019 0.060 User - 37 0.004 0.001 0.072 User - 37 0.004 0.001 0.072 User - 37 0.004 0.001 0.072 6.006 User - 71 0.016 0.012 0.024 User - 37 0.004 0.001 0.072 6.006 User - 71 0.016 0.012 0.024 User - 71 0.016 0.012 0.027 User - 37 0.006 0.002 0.027 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.027		User	_	71	0.003	0.002	0.029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	_	37	0.001	0.000	0.029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	_	37	0.006	0.002	0.031
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	-	100	0.010	0.010	0.042
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	-	37	0.025	0.009	0.051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	-	37	0.002	0.001	0.052
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	-	37	0.002	0.001	0.053
User - 37 0.001 0.001 0.054 User - 71 0.014 0.010 0.064 User - 100 0.004 0.004 0.068 User - 37 0.006 0.002 0.071 9.006 User - 37 0.014 0.005 0.005 User - 100 0.073 0.073 0.078 6.005 User - 71 0.010 0.007 0.007 User - 71 0.016 0.011 0.018 User - 37 0.006 0.002 0.021 User - 37 0.041 0.015 0.036 User - 60 0.010 0.006 0.042 User - 71 0.026 0.019 0.060 User - 60 0.010 0.006 0.070 User - 37 0.001 0.006 0.070 User - 37 0.001 0.006 0.070 User - 37 0.001 0.000 0.070 User - 37 0.004 0.001 0.072 6.006 User - 60 0.021 0.013 0.013 User - 71 0.016 0.012 0.024 User - 37 0.006 0.002 0.027 User - 37 0.007 0.002 0.029 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.027		User	-	37	0.003	0.001	0.054
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	-	37	0.001	0.001	0.054
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	-	71	0.014	0.010	0.064
User- 37 0.0060.0020.0719.006User- 37 0.0140.0050.005User-1000.0730.0730.0786.005User-710.0100.0070.007User-710.0160.0110.18User-370.0410.0150.036User-370.0410.0150.036User-710.0260.0190.060User-600.0100.0060.042User-600.0100.0060.070User-600.0100.0060.070User-370.0010.0000.072User-370.0040.0010.0726.006User-600.0210.0130.013User-370.0060.0020.027User-370.0060.0020.027User-370.0070.0020.029User-710.0140.0100.039User-710.0570.0410.0796.007User-600.0080.0050.005User-370.0060.0020.071		User	-	100	0.004	0.004	0.068
9.006 User - 37 0.014 0.005 0.005 User - 100 0.073 0.073 0.078 6.005 User - 71 0.010 0.007 0.007 User - 71 0.016 0.011 0.018 User - 37 0.006 0.002 0.021 User - 37 0.041 0.015 0.036 User - 60 0.010 0.006 0.042 User - 71 0.026 0.019 0.060 User - 60 0.010 0.006 0.070 User - 37 0.001 0.000 0.070 User - 37 0.001 0.000 0.070 User - 37 0.001 0.001 0.072 6.006 User - 60 0.021 0.013 0.013 User - 71 0.016 0.012 0.024 User - 37 0.006 0.002 0.027 User - 37 0.007 0.002 0.029 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.007		User	-	37	0.006	0.002	0.071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.006	User	-	37	0.014	0.005	0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C 005	User	-	100	0.073	0.073	0.078
User - 71 0.016 0.011 0.018 User - 37 0.006 0.002 0.021 User - 37 0.041 0.015 0.036 User - 60 0.010 0.006 0.042 User - 71 0.026 0.019 0.060 User - 60 0.010 0.006 0.070 User - 60 0.010 0.006 0.070 User - 37 0.001 0.000 0.070 User - 37 0.001 0.000 0.072 User - 37 0.004 0.001 0.072 User - 71 0.016 0.012 0.024 User - 37 0.006 0.002 0.027 User - 37 0.007 0.002 0.029 User - 37 0.007 0.002 0.029 User - 71 0.057 0.041	6.005	User	-	71	0.010	0.007	0.007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	-	27	0.016	0.011	0.018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	_	37	0.008	0.002	0.021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		USEL	_	57	0.041	0.015	0.030
User - 60 0.006 0.004 0.064 User - 60 0.010 0.006 0.070 User - 37 0.001 0.000 0.070 User - 37 0.004 0.001 0.072 6.006 User - 60 0.021 0.013 0.013 User - 71 0.016 0.012 0.024 User - 37 0.006 0.002 0.027 User - 37 0.007 0.002 0.029 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.007		User	_	71	0.010	0.000	0.042
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	_	60	0.006	0.004	0.064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	_	60	0.010	0.006	0.070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		User	_	37	0.001	0.000	0.070
6.006 User - 60 0.021 0.013 0.013 User - 71 0.016 0.012 0.024 User - 37 0.006 0.002 0.027 User - 37 0.007 0.002 0.029 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.007		User	_	37	0.004	0.001	0.072
User - 71 0.016 0.012 0.024 User - 37 0.006 0.002 0.027 User - 37 0.007 0.002 0.029 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.007	6.006	User	-	60	0.021	0.013	0.013
User - 37 0.006 0.002 0.027 User - 37 0.007 0.002 0.029 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.007		User	-	71	0.016	0.012	0.024
User - 37 0.007 0.002 0.029 User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.007		User	-	37	0.006	0.002	0.027
User - 71 0.014 0.010 0.039 User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.007		User	-	37	0.007	0.002	0.029
User - 71 0.057 0.041 0.079 6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.007		User	-	71	0.014	0.010	0.039
6.007 User - 60 0.008 0.005 0.005 User - 37 0.006 0.002 0.007		User	-	71	0.057	0.041	0.079
User - 37 0.006 0.002 0.007	6.007	User	-	60	0.008	0.005	0.005
		User	-	37	0.006	0.002	0.007

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Micro			
Date 14/06/2022 18:25	Designed by R.M.	Desinano			
File Kilternan Planning May 22.MDX	Checked by	Diamaye			
Innovyze	Network 2020.1.3	L			

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	-	37	0.004	0.001	0.008
	User	-	37	0.002	0.001	0.009
	User	-	37	0.001	0.000	0.009
	User	-	37	0.002	0.001	0.010
	User	_	100 71	0.059	0.059	0.069
	User	_	71	0.003	0.004	0.073
	User	_	71	0.005	0.004	0.085
	User	-	71	0.008	0.005	0.091
	User	-	37	0.052	0.019	0.110
6.008	User	-	60	0.005	0.003	0.003
	User	-	37	0.005	0.002	0.005
	User	-	37	0.008	0.003	0.008
	User	-	3/	0.006	0.002	0.010
	User	_	71	0.069	0.069	0.079
	User	_	37	0.037	0.014	0.098
6.009	User	-	37	0.004	0.001	0.001
	User	-	60	0.005	0.003	0.004
	User	-	37	0.002	0.001	0.005
	User	-	37	0.004	0.001	0.007
	User	-	71	0.017	0.012	0.018
12 000	User	-	37	0.007	0.003	0.021
12.000	User	_	95 71	0.025	0.023	0.023
	User	_	37	0.010	0.0012	0.038
	User	_	37	0.009	0.003	0.041
	User	-	60	0.005	0.003	0.044
	User	-	60	0.008	0.005	0.049
	User	-	37	0.022	0.008	0.057
	User	-	92	0.014	0.013	0.069
12 001	User	-	92	0.039	0.036	0.105
12.001	User	_	71 37	0.017	0.012	0.012
	User	_	37	0.007	0.003	0.017
	User	-	37	0.002	0.001	0.018
	User	-	71	0.008	0.006	0.024
12.002	User	-	95	0.007	0.007	0.007
	User	-	71	0.010	0.007	0.014
	User	-	95	0.004	0.003	0.017
	User	_	37	0.008	0.003	0.020
	User	_	60	0.0012	0.004	0.024
	User	_	37	0.003	0.001	0.028
	User	-	100	0.017	0.017	0.045
	User	-	100	0.002	0.002	0.046
12.003	User	-	60	0.007	0.004	0.004
12.004	User	-	95	0.018	0.017	0.017
	User	-	60	0.008	0.005	0.022
	User	_	00 37	0.009	0.005	0.027
13,000	User	_	37	0.001	0.000	0.000
20.000	User	_	37	0.002	0.001	0.001
	User	-	60	0.005	0.003	0.004
	User	-	60	0.005	0.003	0.007
	User	-	60	0.002	0.001	0.009
	User	-	60	0.033	0.020	0.029
	User	-	95	0.010	0.010	0.038
	User	_	3/ 71	0.010	0.004	0.042
	User	_	/ _ 1 0 0	0.009	0.000	0.048
	User	-	100	0.017	0.017	0.073
	_					
		©1	L982-	2020 Inn	ovyze	

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinano			
File Kilternan Planning May 22.MDX	Checked by	Diamage			
Innovyze	Network 2020.1.3				

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	_	70	0 015	0 011	0 084
	User	-	70	0.016	0.011	0.095
	User	-	70	0.028	0.019	0.114
	User	-	37	0.015	0.006	0.120
	User	-	37	0.001	0.001	0.120
	User	-	37	0.001	0.001	0.121
	User	-	37	0.013	0.005	0.126
	User	-	3/	0.011	0.004	0.130
	User	_	37	0.000	0.000	0.130
	User	_	100	0.014	0.013	0.155
	User	_	100	0.002	0.002	0.156
	User	-	100	0.002	0.002	0.158
12.005	User	-	37	0.003	0.001	0.001
	User	-	60	0.010	0.006	0.007
	User	-	37	0.000	0.000	0.007
	User	-	37	0.001	0.000	0.008
	User	_	71	0.034	0.024	0.031
	User	_	100	0.008	0.005	0.044
	User	_	70	0.015	0.010	0.054
	User	-	37	0.021	0.008	0.062
12.006	User	-	37	0.002	0.001	0.001
	User	-	60	0.005	0.003	0.004
	User	-	37	0.016	0.006	0.010
	User	-	71	0.044	0.031	0.041
	User	_	37	0.010	0.004	0.045
12.007	User	_	71	0.024	0.017	0.017
	User	-	100	0.008	0.008	0.025
	User	-	70	0.015	0.010	0.036
	User	-	37	0.010	0.004	0.039
	User	-	37	0.007	0.003	0.042
	User	_	100	0.045	0.017	0.038
	User	_	70	0.023	0.023	0.005
	User	_	60	0.010	0.006	0.122
	User	-	60	0.010	0.006	0.128
	User	-	37	0.005	0.002	0.130
	User	-	37	0.002	0.001	0.130
	User	-	37	0.001	0.000	0.131
	User	-	3/	0.001	0.000	0.131
	USEI User	_	71	0.001	0.000	0.131
	User	_	71	0.002	0.001	0.135
	User	-	71	0.004	0.003	0.138
	User	-	71	0.003	0.002	0.140
	User	-	71	0.004	0.003	0.142
14.000	User	-	71	0.037	0.026	0.026
	User	-	71	0.002	0.002	0.028
	User	_	100	0.003	0.002	0.030
	User	_	70	0.053	0.017	0.047
	User	-	37	0.002	0.001	0.084
	User	-	37	0.002	0.001	0.085
	User	-	37	0.019	0.007	0.092
	User	-	60	0.003	0.002	0.094
	User	_	60 60	0.002	0.001	0.095
	User	_	60	0.005	0.003	0.099
	User	-	60	0.002	0.001	0.101
	User	-	60	0.010	0.006	0.107
		©1	1982-	·2020 Inn	ovyze	

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Micro			
Date 14/06/2022 18:25	Designed by R.M.	Desinardo			
File Kilternan Planning May 22.MDX	Checked by	Diamaye			
Innovyze	Network 2020.1.3	1			

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	- (ha)
	User	_	37	0 001	0 000	0 107
	User	-	37	0.000	0.000	0.107
	User	-	71	0.002	0.001	0.109
	User	-	71	0.001	0.001	0.110
	User	-	37	0.001	0.001	0.110
	User	_	37	0.000	0.000	0.110
	User	-	37	0.005	0.002	0.113
	User	-	37	0.001	0.000	0.114
12.008	User	-	71	0.036	0.025	0.025
	User	-	37	0.011	0.004	0.029
	User	_	6U 71	0.005	0.003	0.032
	User	_	71	0.001	0.02/	0.060
	User	-	71	0.006	0.004	0.064
	User	-	60	0.002	0.001	0.065
	User	-	60	0.007	0.004	0.070
	User	-	100	0.014	0.014	0.083
	User	_	37	0.023	0.010	0.099
	User	-	37	0.001	0.000	0.100
	User	-	37	0.001	0.000	0.100
	User	-	37	0.000	0.000	0.100
	User	-	37	0.001	0.001	0.101
	User	_	37	0.001	0.000	0.101
	User	_	37	0.032	0.012	0.120
	User	-	100	0.015	0.015	0.135
	User	-	70	0.045	0.032	0.167
	User	-	60	0.010	0.006	0.173
	User	-	37	0.002	0.001	0.174
	User	_	37	0.003	0.001	0.175
	User	-	37	0.001	0.000	0.176
	User	-	37	0.001	0.000	0.176
	User	-	71	0.004	0.003	0.179
10.000	User	-	71	0.003	0.002	0.181
12.009	User	_	/1 71	0.001	0.001	0.001
	User	_	71	0.003	0.004	0.004
	User	-	60	0.015	0.009	0.014
	User	-	100	0.014	0.014	0.028
	User	-	70	0.023	0.016	0.044
	User	_	37	0.001	0.001	0.045
	User	_	37	0.000	0.000	0.046
	User	-	37	0.002	0.001	0.046
	User	-	37	0.029	0.011	0.057
	User	-	37	0.021	0.008	0.065
	User	-	100	0.015	0.015	0.080
	User	_	70	0.017	0.017	0.097
	User	-	60	0.015	0.009	0.137
	User	-	37	0.002	0.001	0.138
	User	-	37	0.002	0.001	0.139
	User	-	37	0.002	0.001	0.139
	User	-	3/ 27	0.008	0.003	U.142 0 1/3
	User	_	37	0.001	0.000	0.143
	User	-	37	0.001	0.000	0.143
	User	-	71	0.003	0.002	0.145
	User	-	71	0.003	0.002	0.147

Roger Mullarkey & Associates				
Duncreevan	Kilternan Village			
Kilcock	Stage 3 Planning May'22			
Co. Kildare, Ireland		Mirro		
Date 14/06/2022 18:25	Designed by R.M.	Desinargo		
File Kilternan Planning May 22.MDX	Checked by	Diamade		
Innovyze	Network 2020.1.3	1		

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	_	71	0.002	0.001	0.149
12.010	User	-	71	0.009	0.006	0.006
	User	-	71	0.019	0.014	0.020
	User	-	100	0.008	0.008	0.028
	User	-	70	0.016	0.011	0.039
	User	_	37	0.001	0.000	0.039
	User	_	37	0.003	0.001	0.042
	User	-	37	0.010	0.004	0.045
12.011	-	-	100	0.000	0.000	0.000
15.000	User	-	60	0.078	0.047	0.047
	User	-	71	0.009	0.007	0.054
	User	_	100	0.006	0.004	0.058
	User	_	100	0.008	0.008	0.074
	User	-	70	0.015	0.011	0.085
	User	-	37	0.030	0.011	0.096
	User	-	37	0.008	0.003	0.098
	User	-	37	0.007	0.003	0.101
	User	-	60	0.005	0.003	0.104
	User	_	60 60	0.008	0.005	0.109
	User	_	37	0.001	0.000	0.112
	User	-	37	0.003	0.001	0.113
	User	-	37	0.009	0.004	0.117
	User	-	71	0.010	0.007	0.124
15.001	User	-	71	0.025	0.018	0.018
	User	-	71	0.004	0.003	0.021
	User	_	71	0.002	0.001	0.022
	User	-	100	0.013	0.013	0.040
	User	-	70	0.013	0.009	0.049
	User	-	37	0.001	0.001	0.050
	User	-	37	0.000	0.000	0.050
	User	-	37	0.001	0.000	0.050
	User	_	57	0.010	0.008	0.056
	User	_	60	0.003	0.002	0.059
	User	-	60	0.002	0.001	0.060
	User	-	60	0.002	0.001	0.062
	User	-	71	0.001	0.001	0.062
	User	-	100	0.013	0.013	0.076
	User	_	70	0.024	0.01/	0.092
	User	_	37	0.003	0.001	0.095
	User	-	37	0.002	0.001	0.097
	User	-	37	0.003	0.001	0.098
	User	-	37	0.002	0.001	0.098
	User	-	100	0.031	0.031	0.129
15 002	User	-	/1 71	0.001	0.001	0.130
13.002	USEI User	_	71	0.029	0.021	0.021
	User	_	60	0.003	0.002	0.024
	User	-	60	0.008	0.005	0.029
	User	-	100	0.017	0.017	0.046
	User	-	70	0.028	0.019	0.065
	User	-	37	0.017	0.006	0.071
	User	_	3/ 27	0.000	0.000	0.072
	User	_	37	0.012	0.005	0.077
	User	-	37	0.010	0.004	0.080
	User	-	37	0.002	0.001	0.081
		@1	000	2020 7		
		©_	1902-	ZUZU INNO	ovyze	

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinano			
File Kilternan Planning May 22.MDX	Checked by	Diamage			
Innovyze	Network 2020.1.3				

Dine	DTMD	DTMD	DTMD	Crocco	Tmm	Dime Metal
Pipe	Type	Namo	(%) 51Wb	Gross Area (ha)	Imp. Area (ba)	(ha)
Number	Type	name	(0)	mea (na)	mea (ma)	(iid)
	User	-	100	0.012	0.012	0.092
	User	-	37	0.005	0.002	0.094
	User	-	37	0.004	0.001	0.096
	User	_	37	0.001	0.000	0.096
	USEI User	_	71	0.002	0.001	0.097
	User	-	71	0.005	0.004	0.109
15.003	User	-	71	0.021	0.015	0.015
	User	-	71	0.007	0.005	0.020
	User	-	71	0.010	0.007	0.027
	User	-	71	0.003	0.002	0.029
	User	-	60	0.003	0.002	0.031
	User	-	60 60	0.002	0.001	0.032
	User	_	100	0.005	0.003	0.035
	User	_	70	0.014	0.010	0.053
	User	-	37	0.004	0.001	0.055
	User	-	37	0.002	0.001	0.055
	User	-	37	0.001	0.000	0.056
	User	-	37	0.001	0.000	0.056
	User	-	37	0.001	0.000	0.056
	User	-	37	0.001	0.000	0.057
	User	-	3/	0.001	0.000	0.057
	USEI User	_	37	0.021	0.008	0.005
	User	-	37	0.002	0.001	0.070
	User	-	37	0.004	0.002	0.072
	User	-	37	0.015	0.006	0.077
	User	-	37	0.005	0.002	0.079
	User	-	71	0.016	0.011	0.091
15.004	User	-	71	0.020	0.014	0.014
	User	-	/1	0.008	0.005	0.020
	User	_	37	0.006	0.002	0.022
	User	_	37	0.001	0.000	0.039
	User	-	37	0.023	0.008	0.047
	User	-	71	0.015	0.010	0.058
	User	-	60	0.007	0.004	0.062
	User	-	60	0.004	0.002	0.064
	User	-	60	0.005	0.003	0.067
	User	-	37	0.004	0.001	0.068
	User	_	37	0.008	0.003	0.071
	User	_	37	0.001	0.000	0.072
	User	-	100	0.032	0.032	0.103
	User	-	71	0.007	0.005	0.108
	User	-	71	0.003	0.002	0.110
12.012	User	-	71	0.033	0.023	0.023
	User	-	37	0.011	0.004	0.028
	User	-	71	0.017	0.012	0.040
	User	-	00 27	0.011	0.006	0.046
	USEI User	_	95	0.001	0.000	0.047
6.010	User	_	71	0.019	0.014	0.014
0.010	User	-	37	0.011	0.004	0.018
6.011	User	-	71	0.007	0.005	0.005
	User	-	71	0.007	0.005	0.010
	User	-	71	0.006	0.005	0.015
	User	-	37	0.023	0.009	0.024
10 000	User	-	37	0.053	0.020	0.043
10.000	User	-	100 700	0.063	0.063	0.063
	USET	-	J	0.012	0.011	0.075

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinado			
File Kilternan Planning May 22.MDX	Checked by	Diamaye			
Innovyze	Network 2020.1.3	•			

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)) Area (ha)	(ha)
Number	Type	name	(0)	mea (na)	, miea (ma)	(iid)
	User	-	95	0.005	5 0.005	0.079
	User	-	37	0.009	9 0.003	0.083
	User	-	37	0.019	9 0.007	0.090
	User	-	37	0.00	7 0.002	0.092
	User	-	37	0.001	1 0.000	0.093
	User	-	37	0.000	0.000	0.093
	User	-	37	0.002	2 0.001	0.094
16.001	User	-	100	0.012	2 0.012	0.012
	User	-	95	0.004	4 0.004	0.015
	User	-	95	0.002	2 0.001	0.017
	User	-	95	0.004	4 0.003	0.020
	User	-	37	0.000	0.000	0.020
	User	-	37	0.005	5 0.002	0.022
	User	-	37	0.011	1 0.004	0.026
1.012	User	-	37	0.053	3 0.019	0.019
	User	-	37	0.014	4 0.005	0.025
	User	-	71	0.015	5 0.011	0.036
	User	-	37	0.002	2 0.001	0.036
	User	-	37	0.002	2 0.001	0.037
1.013	-	-	100	0.000	0.000	0.000
1.014	-	-	100	0.000	0.000	0.000
1.015	-	-	100	0.000	0.000	0.000
1.016	-	-	100	0.000	0.000	0.000
1.017	-	-	100	0.000	0.000	0.000
1.018	-	-	100	0.000	0.000	0.000
17.000	-	-	100	0.000	0.000	0.000
17.001	User	-	37	0.005	5 0.002	0.002
17.002	User	-	37	0.010	0.004	0.004
	User	-	92	0.008	3 0.008	0.011
	User	-	92	0.051	1 0.047	0.059
	User	-	100	0.000	6 0.006	0.065
	User	-	100	0.003	3 0.003	0.067
	User	-	92	0.03	1 0.029	0.096
	User	-	85	0.092	2 0.078	0.174
17.003	-	-	100	0.000	0.000	0.000
18.000	User	-	37	0.005	5 0.002	0.002
	User	-	37	0.005	5 0.002	0.004
	User	-	71	0.022	2 0.016	0.019
	User	-	71	0.00	7 0.005	0.024
	User	-	71	0.002	2 0.001	0.026
	User	-	37	0.000	0.000	0.026
	User	-	37	0.001	1 0.000	0.026
	User	-	37	0.013	1 0.004	0.030
	User	-	37	0.002	2 0.001	0.031
17.004	User	-	71	0.004	4 0.003	0.003
	User	-	37	0.001	1 0.000	0.003
	User	-	37	0.019	9 0.007	0.011
				Tota	l Total	Total
				9.895	5 6.494	6.494

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)
S1.018	SExisting Mh	123.210	122.267	122.180	1200	0

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinado			
File Kilternan Planning May 22.MDX	Checked by	Diamaye			
Innovyze	Network 2020.1.3	·			

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

S17.004 SGlenamuck Rd 132.800 131.186 130.150 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	1.000	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 6 Number of Storage Structures 6 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfal	l Model			FSR		1	Profi	le Type	Winter
Return	Period	(years)			2			Cv (S	Summer)	1.000
		Region	Scotland	and	Ireland		l	Cv (I	Winter)	1.000
	M5-	60 (mm)			18.000	Storm	Dura	ation	(mins)	30
		Ratio R			0.271					

Roger Mulla	arkey & A	Associates						Page	25
Duncreevan				Kilterr	nan Villa	ge			
Kilcock				Stage 3	B Planning	g May'22			
Co. Kildare	e, Irela	and						Mi	rm
Date 14/06/	2022 18:	25		Designe	ed by R.M	•			ainado
File Kilter	rnan Plan	nning May 2	22.MDX	Checked	l by			DIG	
Innovyze				Network	2020.1.3	3			
			Onl	ine Contro	ols for S	torm			
	Hvdro	-Brake® Op	otimum Mar	nhole: S44	. DS/PN:	\$9.003. Voli	ume (m³):	8.7	
						•			
			_	Unit Refere	nce MD-SHE-	-0088-4000-145	0-4000		
			I Des	esign Head	(m) /s)		1.450		
			200	Flush-F	lo™	Calc	ulated		
				Object	ive Minim:	ise upstream s	torage		
				Applicat	ion	S	urface		
				Diameter (DIE mm)		ies 88		
			Ir	vert Level	(m)	1	39.920		
		Minimum (Outlet Pipe	Diameter (mm)		150		
		Suggest	ted Manhole	e Diameter (1	mm)		1200		
	Control	Points	Head (m)	Flow (l/s)	Cont	rol Points	Head (m)	Flow (l/s)
Des	ign Point	(Calculated)) 1.450	4.0		Kick-Flo	b® 0.786	5 3.	0
		Flush-Flo ^r	™ 0.385	3.8	Mean Flow	over Head Rang	je -	- 3.	4
storage rou Depth (m)	uting calc Flow (l/s)	ulations wil	ll be inval Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m) Flo	ow (l/s) De	pth (m) Fl	ow (1/s)
0.100	2.7	7 0.800	3.0	2.000	4.6	4.000	6.4	7.000	8.4
0.200	3.5	7 1.000	3.4	2.200	4.9	4.500	6.8 7 1	7.500	8.6 8.9
0.400	3.8	1.400	3.9	2.600	5.2	5.500	7.5	8.500	9.2
0.500	3.7	7 1.600	4.2	3.000	5.6	6.000	7.8	9.000	9.4
0.600	3.6	5 1.800	4.4	3.500	6.0	6.500	8.1	9.500	9.7
	<u>Hydro-</u>	-Brake® Opt	timum Man	hole: S48,	DS/PN:	<u>56.005, Volu</u>	ume (m³):	17.9	
				Unit Refere	nce MD-SHE-	-0207-2500-185	0-2500		
			Γ	esign Head	(m)		1.850		
			Des	ign Flow (l	/s)	Cala	25.0		
				Object	ive Minim:	ise upstream s	torage		
				Applicat	ion	S	urface		
				Sump Availa	ble		Yes		
			Tr	Diameter (1	mm) (m)	1	207		
		Minimum (Jutlet Pipe	Diameter (mm)	±	225		
		Suggest	ted Manhole	e Diameter (mm)		1800		
	Control	Points	Head (m)	Flow (l/s)	Cont	col Points	Head (m)	Flow (l/s)
Des	ign Point	(Calculated) Flush-Flo ¹) 1.850 ™ 0.546	25.0 25.0	Mean Flow	Kick-Flo over Head Rang	p® 1.178 ge -	20. - 21.	2 7
The hydrold as specifie storage rou	ogical cal ed. Shoul uting calc	culations ha d another ty ulations wil	ave been ba ype of cont ll be inval	sed on the H rol device (idated	Head/Discha other than	rge relations a Hydro-Brake	nip for the Optimum® b	Hydro-Bral De utilised	ke® Optimur then these
Depth (m)	Flow (l/s)) Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m) Flo	ow (l/s) De	pth (m) Fl	ow (l/s)

-		-		-		-		-	
0.100	7.1	0.800	24.4	2.000	25.9	4.000	36.2	7.000	47.4
0.200	19.8	1.000	23.0	2.200	27.1	4.500	38.3	7.500	49.0
0.300	23.5	1.200	20.3	2.400	28.3	5.000	40.3	8.000	50.6
0.400	24.6	1.400	21.9	2.600	29.4	5.500	42.2	8.500	52.1
0.500	25.0	1.600	23.3	3.000	31.5	6.000	44.0	9.000	53.5
0.600	25.0	1.800	24.7	3.500	33.9	6.500	45.7	9.500	55.0
	1		1		1		,		

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinado			
File Kilternan Planning May 22.MDX	Checked by	Diamacje			
Innovyze	Network 2020.1.3				

Hydro-Brake® Optimum Manhole: S57, DS/PN: S12.004, Volume (m³): 5.8

Unit Reference	MD-SHE-0058-2000-1850-2000				
Design Head (m)	1.850				
Design Flow (l/s)	2.0				
Flush-Flo™	Calculated				
Objective	Minimise upstream storage				
Application	Surface				
Sump Available	Yes				
Diameter (mm)	58				
Invert Level (m)	139.532				
Minimum Outlet Pipe Diameter (mm)	75				
Suggested Manhole Diameter (mm)	1200				

Control	Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point	(Calculated)	1.850	2.0	Kick-Flo®	0.519	1.1
	Flush-Flo™	0.255	1.4	Mean Flow over Head Range	-	1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)								
0.100	1.2	0.800	1.4	2.000	2.1	4.000	2.8	7.000	3.7
0.200	1.4	1.000	1.5	2.200	2.2	4.500	3.0	7.500	3.8
0.300	1.4	1.200	1.6	2.400	2.3	5.000	3.2	8.000	3.9
0.400	1.3	1.400	1.8	2.600	2.3	5.500	3.3	8.500	4.1
0.500	1.2	1.600	1.9	3.000	2.5	6.000	3.4	9.000	4.2
0.600	1.2	1.800	2.0	3.500	2.7	6.500	3.6	9.500	4.3

Hydro-Brake® Optimum Manhole: S72, DS/PN: S12.012, Volume (m³): 26.0

Unit Reference	MD-SHE-0072-3000-1850-3000
Design Head (m)	1.850
Design Flow (l/s)	3.0
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	72
Invert Level (m)	134.897
Minimum Outlet Pipe Diameter (mm)	100
Suggested Manhole Diameter (mm)	1200

Control	Points	Head (m) Flow	(l/s)		Cont	rol E	Points	Head	(m)	Flow	(1/s)	
Design Point	(Calculated)	1.85	0	3.0				Kick-Flo®	0.	637		1.8	
	Flush-Flo™	0.31	2	2.3	Mean	Flow	over	Head Range		-		2.3	

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow ((l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)
0.100		1.9	Ο.	.800		2.0	2.	.000		3.1	4.	.000		4.3	7.	000		5.6
0.200		2.2	1.	.000		2.3	2.	.200		3.2	4.	.500		4.5	7.	500		5.8
0.300		2.3	1.	.200		2.5	2.	.400		3.4	5.	.000		4.8	8.	000		5.9
0.400		2.3	1.	.400		2.6	2.	.600		3.5	5.	.500		5.0	8.	500		6.1
0.500		2.2	1.	.600		2.8	3.	.000		3.7	6.	.000		5.2	9.	000		6.3
0.600		2.0	1.	.800		3.0	3.	.500		4.0	6.	.500		5.4	9.	500		6.4

Roger Mullarkey & Associates					
Duncreevan	van Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinado			
File Kilternan Planning May 22.MDX	Checked by	Diamacje			
Innovyze	Network 2020.1.3				

Hydro-Brake® Optimum Manhole: S77, DS/PN: S1.012, Volume (m³): 21.9

Unit Reference	MD-SHE-0263-4240-1850-4240					
Design Head (m)	1.850					
Design Flow (l/s)	42.4					
Flush-Flo™	Calculated					
Objective	Minimise upstream storage					
Application	Surface					
Sump Available	Yes					
Diameter (mm)	263					
Invert Level (m)	131.650					
Minimum Outlet Pipe Diameter (mm)	300					
Suggested Manhole Diameter (mm)	2100					

Control	Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point	(Calculated)	1.850	42.2	Kick-Flo®	1.233	34.8
	Flush-Flo™	0.564	42.2	Mean Flow over Head Range	-	36.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m)	Flow (l/s)
0.100 8.4 0.800 41.4 2.000 43.9 4.000 61.3 7.00	80.4
0.200 27.1 1.000 39.8 2.200 45.9 4.500 64.9 7.500	83.2
0.300 39.5 1.200 35.9 2.400 47.9 5.000 68.3 8.000	85.9
0.400 41.4 1.400 37.0 2.600 49.8 5.500 71.5 8.500	88.4
0.500 42.1 1.600 39.4 3.000 53.3 6.000 74.6 9.000	90.9
0.600 42.2 1.800 41.7 3.500 57.5 6.500 77.6 9.500	93.4

Hydro-Brake® Optimum Manhole: S89, DS/PN: S17.004, Volume (m³): 5.5

Unit Reference	MD-SHE-0055-1800-1850-1800
Design Head (m)	1.850
Design Flow (l/s)	1.8
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	55
Invert Level (m)	131.350
Minimum Outlet Pipe Diameter (mm)	75
Suggested Manhole Diameter (mm)	1200

Control	Points	Head (m)	Flow	(1/s)		Cont	rol E	Points	Head	(m)	Flow	(l/s)	
Design Point	(Calculated)	1.850		1.8				Kick-Flo®	0.	489		1.0	
	Flush-Flo™	0.238		1.2	Mean	Flow	over	Head Range		-		1.3	

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow ()	1/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)
0.100		1.1	0.	.800		1.2	2	.000		1.9	4.	000		2.6	7.	000		3.3
0.200		1.2	1.	.000		1.4	2	.200		1.9	4.	500		2.7	7.	500		3.4
0.300		1.2	1.	.200		1.5	2	.400		2.0	5.	000		2.8	8.	000		3.5
0.400		1.1	1.	400		1.6	2	.600		2.1	5.	500		3.0	8.	500		3.6
0.500		1.0	1.	.600		1.7	3	.000		2.2	6.	000		3.1	9.	000		3.7
0.600		1.1	1.	.800		1.8	3	.500		2.4	6.	500		3.2	9.	500		3.8

Roger Mullarkey & Associates		Page 28			
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Micco			
Date 14/06/2022 18:25	Designed by R.M.				
File Kilternan Planning May 22.MDX	Checked by	Drainage			
Innovyze	Network 2020.1.3				
	ge Structures for Storm				
<u>Cellular Stor</u>	age Manhole: S44, DS/PN: S9.003				
I Infiltration Coeffici Infiltration Coeffici	nvert Level (m) 139.950 Safety Factor 2.0 ent Base (m/hr) 0.00000 Porosity 0.95 ent Side (m/hr) 0.00000				
Depth (m) Area (m²) Inf. Area (m²) Depth	m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) I	nf. Area (m²)			
0.000 250.0 0.0 1.8	50 250.0 0.0 1.851 0.0	0.0			
<u>Cellular Stor</u>	age Manhole: S48, DS/PN: S6.005				
I Infiltration Coeffici	nvert Level (m) 138.750 Safety Factor 2.0 ent Base (m/hr) 0.00000 Porosity 0.95				
Infiltration Coeffici	ent Side (m/hr) 0.00000				
Depth (m) Area (m ⁻) Inr. Area (m ⁻) Depth	m) Area (m-) inr. Area (m-) Depth (m) Area (m-) i	nr. Area (m ⁻)			
	50 350.0 0.0 1.851 0.0	0.0			
<u>Cellular Stora</u>	ge Manhole: S57, DS/PN: S12.004				
I Infiltration Coeffici	nvert Level (m) 139.600 Safety Factor 2.0 ent Base (m/hr) 0.00000 Porosity 0.95				
Infiltration Coeffici	ent Side (m/hr) 0.00000				
Depth (m) Area (m ²) Inf. Area (m ²) Depth	m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) I	nf. Area (m²)			
0.000 80.0 0.0 1.8	50 80.0 0.0 1.851 0.0	0.0			
<u>Cellular Stora</u>	ge Manhole: S72, DS/PN: S12.012				
I Infiltration Coeffici	nvert Level (m) 134.950 Safety Factor 2.0 ent Base (m/hr) 0.00000 Porosity 0.95				
Infiltration Coeffici	ent Side (m/hr) 0.00000				
Depth (m) Area (m ²) Inf. Area (m ²) Depth	m) Area (m^2) Inf. Area (m^2) Depth (m) Area (m^2) I	nf. Area (m²)			
	50 /50.0 0.0 1.851 0.0	0.0			
Cellular Stor	age Mannole: S/7, DS/PN: S1.012				
I Infiltration Coeffici Infiltration Coeffici	nvert Level (m) 131.750 Safety Factor 2.0 ent Base (m/hr) 0.00000 Porosity 0.95 ent Side (m/hr) 0.00000				
Depth (m) Area (m ²) Inf. Area (m ²) Depth	m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) I	nf. Area (m²)			
0.000 1000.0 0.0 1.8	50 1000.0 0.0 1.851 0.0	0.0			
<u>Cellular Stora</u>	ge Manhole: S89, DS/PN: S17.004				
I Infiltration Coeffici Infiltration Coeffici	nvert Level (m) 131.500 Safety Factor 2.0 ent Base (m/hr) 0.00000 Porosity 0.95 ent Side (m/hr) 0.00000				
Depth (m) Area (m²) Inf. Area (m²) Depth	m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) I	nf. Area (m²)			
0.000 72.0 0.0 1.8	50 72.0 0.0 1.851 0.0	0.0			
	·				

Roger Mullarkey & Associates							
Duncreevan	Kilternan Village						
Kilcock	Stage 3 Planning May'22						
Co. Kildare, Ireland		Micro					
Date 14/06/2022 18:25	Designed by R.M.						
File Kilternan Planning May 22.MDX	Checked by	Dialinarie					
Innovyze	Network 2020.1.3	I					

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000
Hot Start (mins)Additional Flow - % of Total Flow 0.000
MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500Flow per Person per Day (l/per/day)Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 6 Number of Storage Structures 6 Number of Real Time Controls 0

Synthetic Bainfall Details											
Rainfall Model Region	Scotland and Irela	FSR M5-60 and Rat	(mm) tio R	18.000 0.271	Cv Cv	(Summer) (Winter)	1.000				
Margin for	Flood Risk Warning Analysis Time DTS St DVD St Inertia St	(mm) estep 2.5 catus catus catus	Secon	d Incre	men [.]	15 t (Extend	0.0 ed) OFF ON ON				

Profile(s)				Sum	ner ar	nd Wi	nter
Duration(s) (mins)	15,	30,	60,	120,	180,	240,	360
Return Period(s) (years)					2	, 30,	100
Climate Change (%)					20) , 20	, 20

									Water			Pipe	
	US/MH							US/CL	Level	Flow /	Maximum	Flow	
PN	Name				Even	t		(m)	(m)	Cap.	Vol (m³)	(l/s)	Status
S1.000	S1	15	minute	2	year	Summer	I+20%	142.350	141.007	0.23	0.105	24.2	OK
S1.001	S2	15	minute	2	year	Summer	I+20%	142.020	140.638	0.49	0.396	46.2	OK
S1.002	S3	15	minute	2	year	Summer	I+20%	141.630	140.249	0.35	0.313	69.3	OK
S1.003	S4	15	minute	2	year	Summer	I+20%	139.700	138.349	0.48	0.227	87.5	OK
S2.000	S5	15	minute	2	year	Summer	I+20%	140.710	139.295	0.30	0.090	20.0	OK
S2.001	S6	15	minute	2	year	Summer	I+20%	139.880	138.478	0.23	0.110	36.4	OK
S2.002	S7	15	minute	2	year	Summer	I+20%	139.160	137.662	0.56	0.181	59.2	OK
S1.004	S8	15	minute	2	year	Summer	I+20%	138.950	136.903	0.57	0.283	158.3	OK
S1.005	S9	15	minute	2	year	Summer	I+20%	137.580	136.100	0.56	0.430	179.0	OK
S3.000	S10	15	minute	2	year	Summer	I+20%	136.510	135.143	0.10	0.065	8.6	OK
S3.001	S11	15	minute	2	year	Summer	I+20%	137.730	134.867	0.13	0.149	9.8	OK
S3.002	S12	15	minute	2	year	Summer	I+20%	137.800	134.831	0.39	0.330	31.0	OK
S3.003	S13	15	minute	2	year	Summer	I+20%	137.330	134.620	0.30	0.281	43.1	OK
S3.004	S14	15	minute	2	year	Summer	I+20%	136.650	134.428	0.46	0.695	57.1	OK
S3.005	S15	15	minute	2	year	Summer	I+20%	136.500	134.326	0.43	0.998	57.8	OK
S1.006	S16	15	minute	2	year	Summer	I+20%	136.880	134.294	0.61	1.511	237.3	OK
S1.007	S17	15	minute	2	year	Summer	I+20%	136.650	134.164	0.67	3.186	246.1	OK
S1.008	S18	15	minute	2	year	Summer	I+20%	136.530	133.976	0.56	2.405	271.1	OK
S4.000	S19	15	minute	2	year	Summer	I+20%	138.100	136.143	0.08	0.043	9.2	OK
S1.009	S20	15	minute	2	year	Summer	I+20%	135.920	133.610	0.63	4.771	302.7	OK
S5.000	S21	15	minute	2	year	Summer	I+20%	140.610	139.194	0.37	0.101	30.0	OK
S5.001	S22	15	minute	2	year	Summer	I+20%	139.230	136.948	0.40	0.105	38.1	OK
S5.002	S23	15	minute	2	year	Summer	I+20%	137.520	136.137	0.31	0.128	50.0	OK
S1.010	S24	30	minute	2	year	Summer	I+20%	136.850	133.278	0.49	2.960	352.4	OK
S1.011	S25	30	minute	2	year	Summer	I+20%	136.550	132.851	1.02	1.500	354.1	SURCHARGED
S6.000	S26	15	minute	2	year	Summer	I+20%	142.240	140.810	0.28	0.150	31.5	OK
S7.000	S27	30	minute	2	year	Summer	I+20%	142.000	140.891	0.20	0.097	15.8	OK
S7.001	S28	15	minute	2	year	Summer	I+20%	142.350	140.762	0.29	0.276	28.1	OK
S8.000	S29	30	minute	2	year	Summer	I+20%	142.000	140.663	0.17	0.088	15.8	OK
S8.001	S30	30	minute	2	year	Summer	I+20%	142.500	140.381	0.22	0.192	17.8	OK
S6.001	S31	15	minute	2	year	Summer	I+20%	142.810	140.230	0.38	0.390	101.8	OK
S6.002	S32	15	minute	2	year	Summer	I+20%	142.810	139.886	0.67	1.746	173.3	OK
S6.003	S33	15	minute	2	year	Summer	I+20%	142.500	139.639	0.91	2.687	182.5	OK

©1982-2020 Innovyze

Roger Mullarkey & Associates		Page 30
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Mirro
Date 14/06/2022 18:25	Designed by R.M.	Desinargo
File Kilternan Planning May 22.MDX	Checked by	Diamade
Innovyze	Network 2020.1.3	

	US/MH							US/CL	Water Level	Flow /	Maximum	Pipe Flow		
PN	Name				Event	:		(m)	(m)	Cap.	Vol (m³)	(l/s)	Status	
S6.004	S34	240	minute	2	year	Summer	I+20%	142.400	139.452	0.46	1.846	78.0	SURCHARGED	
S9.000	S35	15	minute	2	year	Summer	I+20%	141.960	140.723	0.14	0.077	13.5	OK	
S9.001	S36	360	minute	2	year	Winter	I+20%	142.200	140.622	0.03	0.771	2.8	OK	
S9.002	S37	360	minute	2	year	Winter	I+20%	142.390	140.622	0.04	1.555	6.5	SURCHARGED	
SIU.000	538	15	minute	2	year	Summer	1+2U3	143.000	141.011	0.29	0.120	50.0	OK	
S10.001	539 540	360	minute	2	vear	Winter	1+20% T+20%	142.750	141.511	0.04	0.525	14 8	SUBCHARGED	
S11.000	S41	15	minute	2	vear	Summer	T+20%	142.630	141.224	0.37	0.101	18.0	OK	
S11.001	S42	15	minute	2	vear	Summer	I+20%	142.380	140.835	0.42	0.162	28.0	OK	
S11.002	S43	360	minute	2	year	Winter	I+20%	142.600	140.622	0.04	0.746	5.2	SURCHARGED	
S9.003	S44	360	minute	2	- year	Winter	I+20%	142.350	140.622	0.10	165.745	3.	SURCHARGED	TANK 4
S9.004	S45	15	minute	2	year	Summer	I+20%	141.940	139.901	0.29	0.220	27.3	OK	
S9.005	S46	30	minute	2	year	Summer	I+20%	141.350	139.404	0.17	0.221	40.2	OK	
S9.006	S47	240	minute	2	year	Summer	I+20%	142.000	139.380	0.12	5.300	23.5	SURCHARGED	
S6.005	S48	240	minute	2	year	Summer	I+20%	142.100	139.376	0.63	221.946	24.9	EURCHARGED	-TANK 3
S6.006	S49	60	minute	2	year	Summer	I+20%	142.030	138.749	0.84	0.428	33.6	OK	
S6.007	S50	30	minute	2	year	Summer	I+20%	141.290	138.564	0.83	0.480	49.5	OK	
S6.008	S51 CE2	30	minute	2	year	Summer	1+20%	139.150	13/./99	0.62	0.232	65.6	OK	
S0.009	55Z 953	15	minute	2	year	Summor	1+203 T+203	141 650	140 422	0.75	0.100	26 1	OK	
S12.000	SJJ S54	360	minute	2	vear	Winter	I+20% T+20%	141.050	140.422	0.25	0.109	20.4	OK OK	
S12.001	S55	360	minute	2	vear	Winter	T+20%	142.080	140.162	0.10	1,406	6.9	SURCHARGED	
S12.003	S56	360	minute	2	vear	Winter	I+20%	142.110	140.161	0.03	1.338	6.8	SURCHARGED	
S12.004	S57	360	minute	2	year	Winter	I+20%	141.750	140.161	0.04	46.141	1.4	SURCHARGED	
S13.000	S58	15	minute	2	- year	Summer	I+20%	142.650	141.133	0.66	0.145	40.0	OK	TANK 5
S12.005	S59	15	minute	2	year	Summer	I+20%	141.700	139.553	0.53	0.226	52.8	OK	
S12.006	S60	15	minute	2	year	Summer	I+20%	141.500	139.327	0.60	0.574	61.6	OK	
S12.007	S61	15	minute	2	year	Summer	I+20%	141.000	138.911	0.48	0.431	87.3	OK	
S14.000	S62	15	minute	2	year	Summer	I+20%	141.530	140.119	0.33	0.095	28.7	OK	
S12.008	S63	15	minute	2	year	Summer	I+20%	140.500	138.607	0.72	1.154	145.1	OK	
SI2.009	S64	15	minute	2	year	Summer	1+20%	139.520	127 252	0.65	0.886	177.2	OK	
S12.010 912 011	505	15	minute	2	year	Summer	1+203 T+208	138 250	135 710	1 05	0.039	172 9	SUBCHARCED	
S15 000	500	15	minute	2	vear	Summer	T+20%	142 680	141 182	0 65	0.035	31 2	OK	
S15.001	S68	15	minute	2	vear	Summer	T+20%	142.440	140.817	0.31	0.139	55.4	OK	
S15.002	S69	15	minute	2	vear	Summer	I+20%	141.180	139.610	0.40	0.207	75.6	OK	
s15.003	S70	15	minute	2	year	Summer	I+20%	140.230	138.683	0.48	0.228	92.3	OK	
S15.004	S71	360	minute	2	year	Winter	I+20%	138.780	135.640	0.11	0.680	23.1	SURCHARGED	
S12.012	S72	360	minute	2	year	Winter	I+20%	137.250	135.640	0.05	514.777	< 2.3	SURCHARGEI	TANK 2
S6.010	S73	30	minute	2	year	Summer	I+20%	137.750	134.985	0.80	0.704	73.9	OK	
S6.011	S74	30	minute	2	year	Summer	I+20%	136.750	132.719	0.48	0.307	81.0	OK	
S16.000	S75	15	minute	2	year	Summer	I+20%	134.250	133.144	0.10	0.128	23.3	OK	
S16.001	S/6	15	minute	2	year	Summer	1+20%	134.250	132.833	0.14	0.3/6	27.8	OK	
SI.UI2	577	360	minute	2	year	Winter	1+2U3	122 500	120 625	0.19	048.039	41.	SURCHARGED	
SI.013 S1 014	570	240	minute	2	year	Summer	I+20% T+20%	130 850	128 484	0.22	0.114	41.0	OK OK	
S1.014	580	240	minute	2	vear	Winter	T+20%	127.750	126.249	0.24	0.118	41.8	OK	
S1.016	S81	240	minute	2	year	Winter	I+20%	127.000	125.475	0.18	0.110	41.8	OK	
S1.017	S82	240	minute	2	year	Winter	I+20%	125.700	122.831	0.35	0.156	41.8	OK	
S1.018	S83	240	minute	2	year	Summer	I+20%	123.500	122.502	0.68	0.318	41.8	OK	
S17.000	S84	15	minute	2	year	Summer	I+20%	136.750	135.250	0.00	0.000	0.0	OK	
S17.001	S85	15	minute	2	year	Summer	I+20%	136.750	134.837	0.01	0.002	0.4	OK	
S17.002	S86	15	minute	2	year	Summer	I+20%	135.750	132.259	0.55	0.174	33.5	OK	
S17.003	S87	360	minute	2	year	Winter	I+20%	134.750	132.221	0.12	1.120	7.1	SURCHARGED	
S18.000	S88	15	minute	2	year	Summer	I+20%	135.500	134.068	0.20	0.071	7.8	OK	
SI/.004	589	360	minute	2	year	Winter	1+20%	134./50	132.221	0.04	50.896	₹.3	SURCHARGED	TANK 6

		Т
Roger Mullarkey & Associates		Page 31
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Micro
Date 14/06/2022 18:25	Designed by R.M.	Desinado
File Kilternan Planning May 22.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	
30 year Return Period Summary of Cr S Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrographs 0 Number Number of Online Controls 6 Number	<pre>itical Results by Maximum Level (Rank 1) imulation Criteria 1.000 Additional Flow - % of Total Flow 0.000 0 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0.500 Flow per Person per Day (l/per/day) 0.000</pre>	<u>for Storm</u>))) grams 0 trols 0
<u>Synt</u> Rainfall Model Region Scotland and	hetic Rainfall Details FSR M5-60 (mm) 18.000 Cv (Summer) 1.000 Ireland Ratio R 0.271 Cv (Winter) 1.000	
Margin for Flood Risk Wa:	rning (mm) 150.0	

Margin	TOT	rioou	KISK Wain	iiiig (iiiiii)				130.0
			Analysis	Timestep	2.5	Second	Increment	(Extended)
			DT	'S Status				OFF
			DV	D Status				ON
			Inerti	a Status				ON

Profile(s)				Sum	mer a	nd Wir	nter
Duration(s) (mins)	15,	30,	60,	120,	180,	240,	360
Return Period(s) (years)					2	, 30,	100
Climate Change (%)					2	0, 20,	, 20

									Water			Pipe	
	US/MH							US/CL	Level	Flow /	Maximum	Flow	
PN	Name			1	Event			(m)	(m)	Cap.	Vol (m³)	(l/s)	Status
S1.000	S1	15	minute	30	year	Summer	I+20%	142.350	141.047	0.42	0.149	44.7	OK
S1.001	S2	15	minute	30	year	Summer	I+20%	142.020	140.787	1.00	1.294	94.2	OK
S1.002	s3	15	minute	30	year	Summer	I+20%	141.630	140.324	0.75	0.710	146.6	OK
S1.003	S4	15	minute	30	year	Summer	I+20%	139.700	138.578	1.05	0.861	189.3	SURCHARGED
S2.000	S5	15	minute	30	year	Summer	I+20%	140.710	139.331	0.56	0.131	36.9	OK
S2.001	S6	15	minute	30	year	Summer	I+20%	139.880	138.529	0.49	0.205	76.9	OK
S2.002	S7	15	minute	30	year	Summer	I+20%	139.160	138.102	1.11	1.528	117.0	SURCHARGED
S1.004	S8	15	minute	30	year	Summer	I+20%	138.950	137.497	1.13	3.853	317.9	SURCHARGED
S1.005	S9	15	minute	30	year	Summer	I+20%	137.580	136.483	1.09	2.413	352.5	SURCHARGED
S3.000	S10	15	minute	30	year	Summer	I+20%	136.510	135.221	0.18	0.154	15.9	OK
S3.001	S11	15	minute	30	year	Summer	I+20%	137.730	135.209	0.28	2.632	20.3	SURCHARGED
S3.002	S12	15	minute	30	year	Summer	I+20%	137.800	135.195	0.76	1.378	60.7	SURCHARGED
S3.003	S13	15	minute	30	year	Summer	I+20%	137.330	135.083	0.55	2.371	79.8	SURCHARGED
S3.004	S14	15	minute	30	year	Summer	I+20%	136.650	134.967	0.78	4.359	97.2	SURCHARGED
S3.005	S15	15	minute	30	year	Summer	I+20%	136.500	134.867	0.72	3.320	97.6	SURCHARGED
S1.006	S16	15	minute	30	year	Summer	I+20%	136.880	134.773	1.14	2.984	444.3	SURCHARGED
S1.007	S17	15	minute	30	year	Summer	I+20%	136.650	134.577	1.25	6.822	454.6	SURCHARGED
S1.008	S18	15	minute	30	year	Summer	I+20%	136.530	134.370	1.03	6.213	501.0	SURCHARGED
S4.000	S19	15	minute	30	year	Summer	I+20%	138.100	136.158	0.15	0.061	16.9	OK
S1.009	S20	15	minute	30	year	Summer	I+20%	135.920	133.926	1.15	15.118	547.7	SURCHARGED
S5.000	S21	15	minute	30	year	Summer	I+20%	140.610	139.236	0.67	0.148	55.4	OK
S5.001	S22	15	minute	30	year	Summer	I+20%	139.230	137.000	0.78	0.164	75.2	OK
S5.002	S23	15	minute	30	year	Summer	I+20%	137.520	136.200	0.66	0.217	104.3	OK
S1.010	S24	30	minute	30	year	Summer	I+20%	136.850	133.498	0.87	8.266	625.6	OK
S1.011	S25	30	minute	30	year	Summer	I+20%	136.550	133.103	1.82	2.798	632.4	SURCHARGED
S6.000	S26	15	minute	30	year	Summer	I+20%	142.240	140.856	0.53	0.216	58.1	OK
S7.000	S27	30	minute	30	year	Summer	I+20%	142.000	140.926	0.37	0.137	29.0	OK
S7.001	S28	15	minute	30	year	Summer	I+20%	142.350	140.824	0.60	0.630	58.0	OK
S8.000	S29	15	minute	30	year	Summer	I+20%	142.000	140.742	0.31	0.177	28.8	OK
S8.001	S30	15	minute	30	year	Summer	I+20%	142.500	140.703	0.60	2.443	48.8	SURCHARGED
S6.001	S31	15	minute	30	year	Summer	I+20%	142.810	140.635	0.65	6.298	175.5	SURCHARGED
S6.002	S32	15	minute	30	year	Summer	I+20%	142.810	140.477	1.18	9.006	306.2	SURCHARGED
S6.003	S33	360	minute	30	year	Summer	I+20%	142.500	140.192	0.50	7.073	99.5	SURCHARGED

©1982-2020 Innovyze

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:25	Designed by R.M.	Desinargo			
File Kilternan Planning May 22.MDX	Checked by	Diamacje			
Innovyze	Network 2020.1.3				

									Water			Pipe		
	US/MH							US/CL	Level	Flow /	Maximum	Flow		
PN	Name			I	Event			(m)	(m)	Cap.	Vol (m³)	(l/s)	Status	
S6.004	S34	360	minute	30	year	Summer	I+20%	142.400	140.103	0.58	3.963	98.4	SURCHARGED	
S9.000	S35	360	minute	30	year	Winter	I+20%	141.960	141.218	0.04	0.636	3.7	SURCHARGED	
S9.001	S36	360	minute	30	year	Winter	I+20%	142.200	141.218	0.04	2.611	4.3	SURCHARGED	
S9.002	S37	360	minute	30	year	Winter	I+20%	142.390	141.217	0.06	2.447	10.3	SURCHARGED	
S10.000	S38	15	minute	30	year	Summer	I+20%	143.000	141.681	0.53	0.199	54.8	OK	t
S10.001	S39	15	minute	30	year	Summer	I+20%	142.730	141.578	1.33	2.408	122.9	SURCHARGED)
S10.002	S40	360	minute	30	year	Winter	I+20%	142.750	141.218	0.13	2.498	25.0	SURCHARGED	
SII.000	S41 C42	2 C U	minute	30	year	Winter	1+2U3	142.630	141.20/	0.68	1 620	33.0	CUDCUADCEL	
S11.001	542	360	minute	30	vear	Winter	T+20%	142.500	141 217	0.13	2 041	8.8	SURCHARGE	
59.003	S44	360	minute	30	vear	Winter	T+20%	142.350	141.217	0.10	307.958	4.8	SURCHARGE	TANK 4
S9.004	S45	360	minute	30	vear	Summer	I+20%	141.940	140.058	0.18	0.776	17.6	OK	:
S9.005	S46	360	minute	30	year	Summer	I+20%	141.350	140.050	0.10	4.804	24.1	SURCHARGED)
S9.006	S47	360	minute	30	year	Summer	I+20%	142.000	140.046	0.14	9.490	28.5	SURCHARGED	
S6.005	S48	360	minute	30	year	Summer	I+20%	142.100	140.042	0.63	444.649	25.0	SURCHARGEE	TANK 3
S6.006	S49	15	minute	30	year	Summer	I+20%	142.030	139.128	0.92	1.202	37.0	SURCHARGED)
S6.007	S50	15	minute	30	year	Summer	I+20%	141.290	139.058	1.20	1.737	71.5	SURCHARGED	
S6.008	S51	15	minute	30	year	Summer	I+20%	139.150	137.954	1.03	0.768	109.7	SURCHARGED)
S6.009	S52	15	minute	30	year	Summer	I+20%	138.060	136.740	1.23	0.592	117.7	SURCHARGED)
S12.000	S53	360	minute	30	year	Winter	I+20%	141.650	140.702	0.07	0.427	7.3	SURCHARGED)
S12.001	S54	360	minute	30	year	Winter	1+20%	141.640	140.701	0.08	3.501	8.8	SURCHARGEL	
SIZ.002	S55 S56	360	minute	30	year	Winter	1+20%	142.080	140./00	0.17	2.046	12.0	SURCHARGEL	
S12.003	SJ0 S57	360	minute	30	vear	Winter	I+20% T+20%	142.110	140.099	0.00	87 817	12.3	SURCHARGEL	
S12.004	558	15	minute	30	vear	Summer	T+20%	142 650	141 459	1 13	0 514	68 8	SURCHARGED	
S13.000	S59	15	minute	30	vear	Summer	I+20%	141.700	140.018	0.88	0.956	88.7	SURCHARGED	
S12.006	S60	15	minute	30	year	Summer	I+20%	141.500	139.832	1.00	2.714	102.6	SURCHARGED)
S12.007	S61	15	minute	30	year	Summer	I+20%	141.000	139.480	0.84	3.731	151.9	SURCHARGED	
S14.000	S62	15	minute	30	year	Summer	I+20%	141.530	140.157	0.61	0.138	53.0	OK	t
S12.008	S63	15	minute	30	year	Summer	I+20%	140.500	139.241	1.23	5.485	247.8	SURCHARGED	
S12.009	S64	15	minute	30	year	Summer	I+20%	139.520	138.470	1.10	4.610	289.5	SURCHARGED	
S12.010	S65	15	minute	30	year	Summer	I+20%	138.600	137.460	1.03	1.909	300.8	SURCHARGED)
S12.011	S66	15	minute	30	year	Summer	I+20%	138.250	136.260	1.78	1.838	293.1	SURCHARGED)
S15.000	S67	15	minute	30	year	Summer	I+20%	142.680	141.376	1.14	0.363	55.2	SURCHARGED	
S15.001	568	15	minute	30	year	Summer	1+20%	142.440	120 600	0.64	0.281	162 4	OF	-
S15.002	509	15	minute	30	year	Summor	1+203 T+203	141.100	130 072	1 05	1 031	200 4	GUDCUADCEL	
S15.003	S70 S71	360	minute	30	vear	Winter	I+20% T+20%	138 780	136 149	0 19	1 408	38 9	SURCHARGEL	
S12.012	S72	360	minute	30	vear	Winter	T+20%	137.250	136.149	0.05	878.371	42.5	SURCHARGED	- TANK 2
S6.010	s73	15	minute	30	vear	Summer	I+20%	137.750	135.204	1.34	1.120	123.0	SURCHARGED)
S6.011	S74	360	minute	30	year	Winter	I+20%	136.750	133.155	0.31	0.931	52.7	SURCHARGED)
S16.000	s75	15	minute	30	year	Summer	I+20%	134.250	133.179	0.18	0.178	43.1	OK	c
S16.001	S76	360	minute	30	year	Winter	I+20%	134.250	133.060	0.04	3.306	8.3	OK	
S1.012	S77	360	minute	30	year	Winter	I+20%	134.500	133.060	0.19	1263.359	41.8	SURCHARGED	
S1.013	S78	30	minute	30	year	Summer	I+20%	132.500	130.625	0.22	0.114	41.8	OK	. I
S1.014	S79	30	minute	30	year	Summer	I+20%	130.850	128.484	0.17	0.089	41.8	OK	t
S1.015	S80	30	minute	30	year	Summer	I+20%	127.750	126.249	0.24	0.118	41.8	OK	
S1.016	S81	30	minute	30	year	Winter	1+20%	127.000	125.475	0.18	0.110	41.8	OK	
SI.017	S82	30	minute	30 20	year	Winter	1+20%	122.700	122.831	0.35	0.156	41.8	OK	
SI.UI8 917 000	583 co/	3U 1 5	minute	30 30	year	Summor	1+∠U% T+2N%	136 750	135 250	0.68	0.000	41.8	OK	:
S17 001	504	15	minute	30	year	Summer	⊥+203 T+209	136 750	134 846	0.00	0.000	0.0	Ur N	
S17,002	586	360	minute	30	vear	Winter	±+20%	135.750	132.884	0.19	0.881	12.0	SURCHARGED	
s17.003	S87	360	minute	30	vear	Winter	I+20%	134.750	132.883	0.18	2.209	11.3	SURCHARGET	
S18.000	S88	15	minute	30	year	Summer	I+20%	135.500	134.094	0.37	0.101	14.5	Oľ	
S17.004	S89	360	minute	30	year	Winter	I+20%	134.750	132.882	0.05	96.911	<1.7	SURCHARGEI	TANK 6

Roger Mullarkey & Associates	Page 33	
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Mirro
Date 14/06/2022 18:25	Designed by R.M.	Desinado
File Kilternan Planning May 22.MDX	Checked by	Diamarje
Innovyze	Network 2020.1.3	

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000
Hot Start (mins)Additional Flow - % of Total Flow 0.000
MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500Flow per Person per Day (l/per/day)Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 6 Number of Storage Structures 6 Number of Real Time Controls 0

	Svnthetic Rai	nfall Detai	ls			
Rainfall Model	FSR	M5-60 (mm)	18.000	Cv	(Summer)	1.000
Region S	cotland and Ireland	Ratio R	0.271	Cv	(Winter)	1.000
Margin for Fl	ood Risk Warning (mm)			15	0.0
	Analysis Timeste	p 2.5 Secon	ld Increm	nent	(Extend	ed)
	DTS Statu	s				OFF
	DVD Statu	S				ON
	Inertia Statu	S				ON

 Profile(s)
 Summer and Winter

 Duration(s) (mins)
 15, 30, 60, 120, 180, 240, 360

 Return Period(s) (years)
 2, 30, 100

 Climate Change (%)
 20, 20, 20

									Water			Pipe	
	US/MH							US/CL	Level	Flow /	Maximum	Flow	
PN	Name			E	vent			(m)	(m)	Cap.	Vol (m³)	(l/s)	Status
S1.000	S1	15	minute	100	year	Summer	I+20%	142.350	141.120	0.54	0.232	57.0	OK
S1.001	S2	15	minute	100	year	Summer	I+20%	142.020	141.006	1.24	2.903	116.8	SURCHARGED
S1.002	S3	15	minute	100	year	Summer	I+20%	141.630	140.479	0.88	2.040	172.1	SURCHARGED
S1.003	S4	15	minute	100	year	Summer	I+20%	139.700	139.118	1.18	2.559	213.3	SURCHARGED
S2.000	S5	15	minute	100	year	Summer	I+20%	140.710	139.354	0.73	0.157	48.0	OK
S2.001	S6	15	minute	100	year	Summer	I+20%	139.880	139.059	0.59	1.864	91.8	SURCHARGED
S2.002	S7	15	minute	100	year	Summer	I+20%	139.160	138.878	1.22	3.656	128.7	SURCHARGED
S1.004	S8	15	minute	100	year	Summer	I+20%	138.950	138.120	1.26	6.853	353.9	SURCHARGED
S1.005	S9	15	minute	100	year	Summer	I+20%	137.580	136.894	1.21	4.580	389.3	SURCHARGED
S3.000	S10	15	minute	100	year	Summer	I+20%	136.510	135.897	0.21	0.919	18.7	SURCHARGED
S3.001	S11	15	minute	100	year	Summer	I+20%	137.730	135.878	0.44	3.843	32.0	SURCHARGED
S3.002	S12	15	minute	100	year	Summer	I+20%	137.800	135.864	0.86	2.135	69.0	SURCHARGED
S3.003	S13	30	minute	100	year	Summer	I+20%	137.330	135.733	0.54	3.303	78.9	SURCHARGED
S3.004	S14	30	minute	100	year	Summer	I+20%	136.650	135.623	0.83	5.299	103.8	SURCHARGED
S3.005	S15	30	minute	100	year	Summer	I+20%	136.500	135.524	0.82	4.259	110.8	SURCHARGED
S1.006	S16	30	minute	100	year	Summer	I+20%	136.880	135.413	1.28	5.267	496.7	SURCHARGED
S1.007	S17	30	minute	100	year	Summer	I+20%	136.650	135.181	1.40	7.897	510.5	SURCHARGED
S1.008	S18	30	minute	100	year	Summer	I+20%	136.530	134.938	1.16	7.241	563.7	SURCHARGED
S4.000	S19	15	minute	100	year	Summer	I+20%	138.100	136.168	0.20	0.071	21.9	OK
S1.009	S20	15	minute	100	year	Summer	I+20%	135.920	134.423	1.32	19.651	631.3	SURCHARGED
S5.000	S21	15	minute	100	year	Summer	I+20%	140.610	139.263	0.88	0.179	72.0	OK
S5.001	S22	15	minute	100	year	Summer	I+20%	139.230	137.087	1.01	0.262	97.3	SURCHARGED
S5.002	S23	15	minute	100	year	Summer	I+20%	137.520	136.235	0.84	0.269	134.4	OK
S1.010	S24	15	minute	100	year	Summer	I+20%	136.850	133.916	1.06	13.103	763.7	SURCHARGED
S1.011	S25	360	minute	100	year	Winter	I+20%	136.550	133.447	0.51	4.121	177.5	SURCHARGED
S6.000	S26	15	minute	100	year	Summer	I+20%	142.240	141.449	0.61	1.066	67.3	SURCHARGED
S7.000	S27	15	minute	100	year	Summer	I+20%	142.000	141.551	0.53	0.844	41.7	SURCHARGED
S7.001	S28	15	minute	100	year	Summer	I+20%	142.350	141.476	0.70	2.564	66.8	SURCHARGED
S8.000	S29	15	minute	100	year	Summer	I+20%	142.000	141.515	0.47	1.051	44.2	SURCHARGED
S8.001	S30	15	minute	100	year	Summer	I+20%	142.500	141.428	0.64	3.691	52.1	SURCHARGED
S6.001	S31	15	minute	100	year	Summer	I+20%	142.810	141.319	0.81	10.047	216.5	SURCHARGED
S6.002	S32	15	minute	100	year	Summer	I+20%	142.810	141.087	1.40	9.901	365.1	SURCHARGED
S6.003	S33	360	minute	100	year	Winter	I+20%	142.500	140.632	0.39	7.703	77.7	SURCHARGED

Roger Mullarkey & Associates						
Duncreevan	Kilternan Village					
Kilcock	Stage 3 Planning May'22					
Co. Kildare, Ireland		Mirro				
Date 14/06/2022 18:25	Designed by R.M.					
File Kilternan Planning May 22.MDX	Checked by	Diamade				
Innovyze	Network 2020.1.3					

									Water			Pipe			
	US/MH							US/CL	Level	Flow /	Maximum	Flow			
PN	Name			E	vent			(m)	(m)	Cap.	Vol (m³)	(l/s)	Status		
S6.004	S34	360	minute	100	year	Winter	I+20%	142.400	140.552	0.46	4.605	78.1	SURCHARGED		
S9.000	S35	360	minute	100	year	Winter	I+20%	141.960	141.599	0.04	1.068	4.4	SURCHARGED		
S9.001	S36	360	minute	100	year	Winter	I+20%	142.200	141.599	0.05	3.043	5.0	SURCHARGED		
S9.002	S37	360	minute	100	year	Winter	I+20%	142.390	141.599	0.07	2.993	12.6	SURCHARGED		
S10.000	S38	15	minute	100	year	Summer	I+20%	143.000	141.969	0.65	0.524	66.6	SURCHARGED		
S10.001	S39	15	minute	100	year	Summer	I+20%	142.730	141.802	1.68	3.241	155.8	SURCHARGED		
S10.002	S40	360	minute	100	year	Winter	I+20%	142.750	141.599	0.16	3.594	31.5	SURCHARGED		
S11.000	S41	360	minute	100	year	Winter	I+20%	142.630	141.600	0.13	0.526	6.2	SURCHARGED		
S11.001	S42	360	minute	100	year	Winter	I+20%	142.380	141.599	0.16	2.221	10.8	SURCHARGED		
S11.002	S43	360	minute	100	year	Winter	I+20%	142.600	141.599	0.08	2.587	10.6	SURCHARGED		
S9.003	S44	360	minute	100	year	Winter	I+20%	142.350	141.599	0.11	399.096	4.1	SURCHARGE	ANK 4	
S9.004	S45	360	minute	100	year	Summer	I+20%	141.940	140.498	0.22	1.346	20.9	SURCHARGED		
S9.005	S46	360	minute	100	year	Summer	I+20%	141.350	140.489	0.11	5.479	26.4	SURCHARGED		
S9.006	S47	360	minute	100	year	Summer	I+20%	142.000	140.486	0.18	10.119	35.8	SURCHARGED		•
S6.005	S48	360	minute	100	year	Summer	I+20%	142.100	140.481	0.63	591.253	25.€	SURCHARGEI	TANK 3	L
S6.006	S49	15	minute	100	year	Summer	I+20%	142.030	139.600	0.97	1.735	38.9	SURCHARGED		1
S6.007	S50	15	minute	100	year	Summer	I+20%	141.290	139.557	1.30	2.302	76.8	SURCHARGED		
S6.008	S51	15	minute	100	year	Summer	I+20%	139.150	138.353	1.12	2.323	120.1	SURCHARGED		
S6.009	S52	15	minute	100	year	Summer	I+20%	138.060	136.920	1.36	0.924	129.4	SURCHARGED		
S12.000	S53	360	minute	100	year	Winter	I+20%	141.650	141.061	0.09	0.833	9.1	SURCHARGED		
S12.001	S54	360	minute	100	year	Winter	I+20%	141.640	141.060	0.09	3.907	9.8	SURCHARGED		
S12.002	S55	360	minute	100	year	Winter	I+20%	142.080	141.059	0.19	2.451	13.5	SURCHARGED		
S12.003	S56	360	minute	100	year	Winter	I+20%	142.110	141.058	0.07	2.622	13.7	SURCHARGED		_
S12.004	S57	360	minute	100	year	Winter	I+20%	141.750	141.057	0.05	115.573	14	SURCHARGED	TANK 5	4
S13.000	S58	15	minute	100	year	Summer	I+20%	142.650	142.073	1.31	1.208	79.6	SURCHARGED		-
S12.005	S59	15	minute	100	year	Summer	I+20%	141.700	140.933	0.97	3.619	97.1	SURCHARGED		
S12.006	S60	15	minute	100	year	Summer	I+20%	141.500	140.747	1.17	4.330	120.1	SURCHARGED		
S12.007	S61	15	minute	100	year	Summer	I+20%	141.000	140.397	0.91	5.353	165.3	SURCHARGED		
S14.000	S62	15	minute	100	year	Summer	I+20%	141.530	140.415	0.76	0.430	66.1	SURCHARGED		
S12.008	S63	15	minute	100	year	Summer	I+20%	140.500	140.122	1.37	8.094	276.2	SURCHARGED		
S12.009	S64	15	minute	100	year	Summer	I+20%	139.520	139.163	1.27	6.700	334.3	SURCHARGED		
S12.010	S65	15	minute	100	year	Summer	1+20%	138.600	13/./83	1.21	4.115	350.6	SURCHARGED		
S12.011	566	15	minute	100	year	Summer	1+20%	138.250	136.549	2.05	2.925	33/.1	SURCHARGED		
S15.000	567	15	minute	100	year	Summer	1+208	142.680	141.630	1.46	0.650	/0.6	SURCHARGED		
S15.001	568	15	minute	100	year	Summer	1+20%	142.440	141.022	0.80	0.842	141.6	SURCHARGED		
S15.002	569	15	minute	100	year	Summer	1+20%	141.180	140.340	0.99	2.629	186.4	SURCHARGED		
S15.003	S70	200	minute	100	year	Summer	1+208 T+208	140.230	139.415	1.19	2.384	228.3	SURCHARGED		
S15.004	571	200	minute	100	year	Winter	1+203	138.780	100.474	0.24	1110 007	49.0	SURCHARGED		
SI2.012	572	360	minute	100	year	Winter	1+208 T+208	137.250	136.4/4	1 47	1 202	125 0	SURCHARGED	TANK 2	
S6.010	575	200	minute	100	year	Summer	1+203	137.750	100.277	1.4/	1.203	100.0	SURCHARGED		
SU.UII	075	260	minute	100	year	Winter	1720°	124 250	122 ///	0.33	1.492	J9.2	SUKCHARGED		
S16.000	515	260	minute	100	year	Winter	1720°	124.250	122 ///	0.05	0.337	10.2	CUDCUADCED		
SI0.001	570	200	minute	100	year	Winter	17200	134.230	100 444	0.05	0.027	10.5	SURCHARGED	TANK 1	
SI.012	070	260	minute	100	year	Winter	1720°	134.500	120 625	0.19	1029.210	41.0	SUKCHARGED		_
SI.013	570	260	minute	100	year	Winter	1720°	132.300	100.023	0.22	0.114	41.0	OK		
S1.014 S1 015	990	360	minute	100	year	Summor	TT700	127 750	126 2/0	0.17	0.009	41.0	OK		
S1.015 S1 016	S00 S81	240	minute	100	year	Winter	I+20% T+20%	127.750	125 175	0.24	0.110	41.0	OK OK		
S1.010 S1 017	000 201	100	minute	100	year	Wintor	±r∠Uる T+0∩©	125 700	122 031	0.10	0.110	71.0 11.0	OK OV		
SI.UI/ S1 010	202 022	700 700	minute	100	year	Wintor	⊥⊤∠∪る T+0∩©	123 500	122.031	0.33	0.100	41.0 /1 0	OK OV		
S1.010 S17 000	202	JUU 1 F	minute	100	year	Summor	⊥+203 T+209	136 750	135 250	0.00	0.31/	-11.0	OK OV		
S17 000	204 205	15 15	minute	100	year	Summor	⊥+203 T+209	136 750	13/ 250	0.00	0.000	1 2	OK OV		
S17 002	685 203	3 E U	minute	100	year	Winter	1+203 T+209	135 750	133 315	0.02	1 360	15 2	SUBCHARCED		
S17 002	200 027	360	minute	100	year	Wintor	T+203	13/ 750	133 314	0.20	2 606	1/7	GIIDCHARGED		
S18 000	207	15	minute	100	year	Summer	⊥+203 T+209	135 500	134 110	0.24	2.090 0 119	18 P	JUNCHARGED		
S17 004	200	3 E U	minute	100	year	Winter	± r∠∪る T+2∩9	134 750	122 212	0.40	126 864	10.0 1 Q	SUBCHARCED	TANK	5
511.004	509	500	minuce	± 0 0	YCar	MINCEL	T 1 Z U 0			0.00	120.004				1

Roger Mullarkey & Associates		Page 1								
Duncreevan	Kilternan Village									
Kilcock	Stage 3 Planning May'22									
Co. Kildare, Ireland		Mirro								
Date 14/06/2022 18:16	Designed by R.M.	Drainane								
File Kilternan Planning BLOCKED Pla	Checked by	biainage								
Innovyze	Network 2020.1.3									
STORM SEWER DESIGN	N by the Modified Rational Meth	ALIS								
Desig	n Criteria for Storm									
ripe Sizes S	TANDARD Mainiote Sizes Standard	_,								
FSR Rainfall Return Period (years M5-60 (mm Ratio Maximum Rainfall (mm/hr Maximum Time of Concentration (mins Foul Sewage (1/s/ha Volumetric Runoff Coeff	L Model - Scotland and Ireland a) 2 PIMP (%) b) 18.000 Add Flow / Climate Change (%) R 0.271 Minimum Backdrop Height (m) b) 90 Maximum Backdrop Height (m) c) 90 Minimum Backdrop Height (m) c) 30 Min Design Depth for Optimisation (m) c) 0.000 Min Vel for Auto Design only (m/s) c. 1.000 Min Slope for Optimisation (1:X)	100 0 0.200 3.000 1.500 0.75 180								
Desig	gned with Level Soffits									
Free Flowing Outfall Details for Storm										
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)									
S1.018 SExisting Mh 123.210 122.267 122.180 1200 0										
Free Flowing	g Outfall Details for Storm									
Outfall Outfall	C. Level I. Level Min D.L W									
Pipe Number Name	(m) (m) I. Level (mm) (mm) (m)									
S17.004 SGlenamuck	Rd 132.800 131.186 130.150 0 0									
Simulat	<u>ion Criteria for Storm</u>									
Volumetric Runoff Coeff 1.000Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Inlet Coefficient 0.800Hot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.000Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (1/s)0.000Output Interval (mins)1										
Number of Input Hydrographs 0 Number Number of Online Controls 6 Number	er of Offline Controls O Number of Time/Area Dia of Storage Structures 6 Number of Real Time Con	grams O trols O								
Synthe	etic Rainfall Details									
Rainfall Model Return Period (years) Region Scotl M5-60 (mm) Ratio R	FSR Profile Type Summer 100 Cv (Summer) 1.000 Land and Ireland Cv (Winter) 1.000 18.000 Storm Duration (mins) 30 0.271									

Roger Mullark	key & As	ssociates						Pag	je 2
Duncreevan				Kilterr	an Villag	е			
Kilcock				Stage 3	Planning	May'22			
Co. Kildare,	Irelar	nd						N	licco
Date 14/06/20)22 18:1	6		Designe	d bv R.M.				
File Kilterna	an Planr	ing BLOCKEI	n Pla	Checker	hy				Irainage
			5 114	Network	. Dy . 2020 1 2				
тшоууге				Network	2020.1.3				
			<u>Onlir</u>	ne Contro	ols for St	orm			
	Hvdro-	Brake® Opti	mum Manh	ole: S44	. DS/PN: S	59.003. Volu	me (m³):	8.7	
	<u>,</u>				, ,				
			Ur Des	nit Refere sign Head	nce MD-SHE- (m)	0012-1000-1450	-1000 1.450		
			Desig	gn Flow (l	() /s)		0.1		
			-	Flush-F	lom	Calcu	lated		
				Object	ive Minimi	se upstream st	orage		
			_	Applicat	ion	Su	rface		
			Si	ump Availa.	ole		Yes		
			L	Diameter (nm)	13	12 9 920		
		Minimum Out	let Pipe I	Diameter ((III) nm)	10	75		
		Suggested	Manhole I	Diameter (1	nm)		1200		
		55			,				
	Control 1	Points H	lead (m) F	low (1/s)	Contr	ol Points	Head (m)	Flow (1,	/s)
Desigr	n Point (Calculated)	1.450	0.1		Kick-Flo®	0.110		0.0
		Flush-Flo™	0.048	0.0	Mean Flow o	over Head Range	- e	(0.1
as specified. storage routi	Should ng calcu	another type lations will	of contro be invalid	l device d lated	other than a	Hydro-Brake (Optimum® be	e utilise	ed then these
Depth (m) Flo	ow (1/s)	Depth (m) Fl	ow (1/s) [Oepth (m)	Flow (l/s)	Depth (m) Flow	7 (1/s) Dej	pth (m) 1	Flow (l/s)
0.100	0.0	0.800	0.1	2.000	0.1	4.000	0.2	7.000	0.2
0.200	0.0	1.000	0.1	2.200	0.1	4.500	0.2	7.500	0.2
0.300	0.1	1.200	0.1	2.400	0.1	5.000	0.2	8.000	0.2
0.400	0.1	1.400	0.1	2.600	0.1	5.500	0.2	8.500	0.2
0.500	0.1	1.800	0.1	3.500	0.1	6.500	0.2	9.000	0.2
0.000	0.1	1.000	0.1	0.000	0.1	0.000	0.2	5.000	0.2
	<u>Hydro-E</u>	<u>Brake® Optir</u>	num Manho	ole: S48,	DS/PN: S	6.005, Volum	ne (m³):	17.9	
			Ur	nit Refere	nce MD-SHE-	0012-1000-1850	-1000		
			Des	sign Head	(m)		1.850		
			Desig	JII FLOW (L Fluch-F	/S)	Calcu	lated		
				Object	ive Minimi	se upstream st	orage		
				Applicat	ion	Su Su	rface		
			Sı	ump Availa	ole		Yes		
			I	Diameter (nm)		12		
			Inve	ert Level	(m)	13	8.708		
		Minimum Out	let Pipe I	Diameter (nm)		75		
		Suggested	Mannole I	Diameter (1	nm)		1200		
	Control 1	Points H	lead (m) F	low (1/s)	Contr	ol Points	Head (m)	Flow (1	/s)
Desigr	n Point (Calculated)	1.850	0.1		Kick-Flo@	0.105		0.0
		Flush-Flo™	0.040	0.0	Mean Flow o	over Head Range	e –	(0.1
The hydrologi as specified.	cal calc Should	ulations have another type	been base of contro	ed on the H ol device (Head/Discham other than a	rge relationshi A Hydro-Brake (ip for the Optimum® be	Hydro-Br e utilise	ake® Optimur d then these
storage routi	ng calcu	lations will	be invalid	lated					
Depth (m) Flo	ow (1/s)	Depth (m) Fl	ow (l/s) [Oepth (m)	Flow (l/s)	Depth (m) Flow	r (l/s) Dej	pth (m) 1	Flow (l/s)
0.100	0.0	0.800	0.1	2.000	0.1	4.000	0.1	7.000	0.2
0.200	0.0	1.000	0.1	2.200	0.1	4.500	0.1	7.500	0.2

©1982-2020 1	Innovvze
--------------	----------

2.400

2.600

3.000

3.500

5.000

5.500

6.000

6.500

0.1

0.1

0.1

0.1

8.000

8.500

9.000

9.500

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.300

0.400

0.500

0.600

1.200

1.400

1.600

1.800

0.1

0.1

0.1

0.1

0.0

0.1

0.1

0.1

Roger Mullarkey & Associates					
Duncreevan	Kilternan Village				
Kilcock	Stage 3 Planning May'22				
Co. Kildare, Ireland		Mirro			
Date 14/06/2022 18:16	Designed by R.M.	Desinado			
File Kilternan Planning BLOCKED Pla	Checked by	Diamage			
Innovyze	Network 2020.1.3	-			

Hydro-Brake® Optimum Manhole: S57, DS/PN: S12.004, Volume (m³): 5.8

Unit Reference MD-SHE-0012-1000-1850-1000 Design Head (m) 1.850 Design Flow (l/s) 0.1 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 12 139.532 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 7.5 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point	(Calculated)	1.850	0.1	Kick-Flo®	0.105	0.0
	Flush-Flo™	0.040	0.0	Mean Flow over Head Range	-	0.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)								
0.100	0.0	0.800	0.1	2.000	0.1	4.000	0.1	7.000	0.2
0.200	0.0	1.000	0.1	2.200	0.1	4.500	0.1	7.500	0.2
0.300	0.0	1.200	0.1	2.400	0.1	5.000	0.2	8.000	0.2
0.400	0.1	1.400	0.1	2.600	0.1	5.500	0.2	8.500	0.2
0.500	0.1	1.600	0.1	3.000	0.1	6.000	0.2	9.000	0.2
0.600	0.1	1.800	0.1	3.500	0.1	6.500	0.2	9.500	0.2

Hydro-Brake® Optimum Manhole: S72, DS/PN: S12.012, Volume (m³): 26.0

Unit Reference	MD-SHE-0012-1000-1850-1000
Design Head (m)	1.850
Design Flow (l/s)	0.1
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	12
Invert Level (m)	134.897
Minimum Outlet Pipe Diameter (mm)	75
Suggested Manhole Diameter (mm)	1200

Control	Points	Head	(m)	Flow	(l/s)		Cont	rol P	oints	Head	(m)	Flow	(l/s)	
Design Point	(Calculated)	1.	850		0.1				Kick-Flo®	0.	105		0.0	
	Flush-Flo™	Ο.	040		0.0	Mean	Flow	over	Head Range		-		0.1	

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/	s) Dep	th (m)	Flow	(l/s)	Depth (1	n) Flow	w (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100	0	.0	0.800		0.1	2.0	00	0.1	4.000	0.1	7.000	0.2
0.200	0	.0	1.000		0.1	2.2	00	0.1	4.500	0.1	7.500	0.2
0.300	0	.0	1.200		0.1	2.4	00	0.1	5.000	0.2	8.000	0.2
0.400	0	.1	1.400		0.1	2.6	00	0.1	5.500	0.2	8.500	0.2
0.500	0	.1	1.600		0.1	3.0	0 0	0.1	6.000	0.2	9.000	0.2
0.600	0	.1	1.800		0.1	3.5	00	0.1	6.500	0.2	9.500	0.2

Roger Mullarkey & Associates						
Duncreevan	Kilternan Village					
Kilcock	Stage 3 Planning May'22					
Co. Kildare, Ireland		Mirro				
Date 14/06/2022 18:16	Designed by R.M.	Desinado				
File Kilternan Planning BLOCKED Pla	Checked by	Diamage				
Innovyze	Network 2020.1.3	•				

Hydro-Brake® Optimum Manhole: S77, DS/PN: S1.012, Volume (m³): 21.9

Unit Reference MD-SHE-0012-1000-1850-1000 Design Head (m) 1.850 Design Flow (l/s) 0.1 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 12 Invert Level (m) 131.650 Minimum Outlet Pipe Diameter (mm) 7.5 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point	(Calculated)	1.850	0.1	Kick-Flo®	0.105	0.0
	Flush-Flo™	0.040	0.0	Mean Flow over Head Range	-	0.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1	1/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)
0.100		0.0	0.	.800		0.1	2	.000		0.1	4.	000		0.1	7.	000		0.2
0.200		0.0	1.	.000		0.1	2	.200		0.1	4.	500		0.1	7.	500		0.2
0.300		0.0	1.	.200		0.1	2	.400		0.1	5.	000		0.2	8.	000		0.2
0.400		0.1	1.	.400		0.1	2	.600		0.1	5.	500		0.2	8.	500		0.2
0.500		0.1	1.	.600		0.1	3	.000		0.1	6.	000		0.2	9.	000		0.2
0.600		0.1	1.	.800		0.1	3	.500		0.1	6.	500		0.2	9.	500		0.2

Hydro-Brake® Optimum Manhole: S89, DS/PN: S17.004, Volume (m³): 5.5

Unit Reference	MD-SHE-0012-1000-1850-1000
Design Head (m)	1.850
Design Flow (l/s)	0.1
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	12
Invert Level (m)	131.350
Minimum Outlet Pipe Diameter (mm)	75
Suggested Manhole Diameter (mm)	1200

Control	Points	Head ((m)	Flow	(l/s)		Cont	rol I	Points		Head	(m)	Flow	(l/s)	
Design Point	(Calculated)	1.8	350		0.1				Kick-F	lo®	0.	105		0.0	
	Flush-Flo™	0.0	40		0.0	Mean	Flow	over	Head Ra	ange		-		0.1	

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1,	/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)
0.100	(0.0	0.	.800		0.1	2	.000		0.1	4.	000		0.1	7.	000		0.2
0.200	(0.0	1.	.000		0.1	2	.200		0.1	4.	500		0.1	7.	500		0.2
0.300	(0.0	1.	.200		0.1	2	.400		0.1	5.	000		0.2	8.	000		0.2
0.400	(0.1	1.	.400		0.1	2	.600		0.1	5.	500		0.2	8.	500		0.2
0.500	(0.1	1.	.600		0.1	3	.000		0.1	6.	000		0.2	9.	000		0.2
0.600	(0.1	1.	.800		0.1	3	.500		0.1	6.	500		0.2	9.	500		0.2

Roger Mullarkey & Associates		Page 5
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Micro
Date 14/06/2022 18:16	Designed by R.M.	Drainage
The Allerhan Flanning BLOCKED Fla	Network 2020 1 3	
<u>Storage</u>	Structures for Storm	
<u>Cellular Storage</u>	e Manhole: S44, DS/PN: S9.003	
Inve Infiltration Coefficient Infiltration Coefficient	ert Level (m) 139.950 Safety Factor 2.0 E Base (m/hr) 0.00000 Porosity 0.95 E Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m)	Area (m^2) Inf. Area (m^2) Depth (m) Area (m^2) I	nf. Area (m²)
0.000 250.0 0.0 1.850	250.0 0.0 1.851 0.0	0.0
<u>Cellular Storage</u>	e Manhole: S48, DS/PN: S6.005	
Inve	ert Level (m) 138.750 Safety Factor 2.0	
Infiltration Coefficient Infiltration Coefficient	Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Area (m²) Depth (m)	Area (m²) Inf. Area (m²) Depth (m) Area (m²) I	nf. Area (m²)
0.000 350.0 0.0 1.850	350.0 0.0 1.851 0.0	0.0
Cellular Storage	Manhole: S57. DS/PN: S12.004	
Inve Infiltration Coefficient Infiltration Coefficient	E Level (m) 139.800 Salety Factor 2.0 E Base (m/hr) 0.00000 Porosity 0.95 E Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m)	Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) I	nf. Area (m²)
0.000 80.0 0.0 1.850	80.0 0.0 1.851 0.0	0.0
<u>Cellular Storage</u>	Manhole: S72, DS/PN: S12.012	
Inve	ert Level (m) 134.950 Safety Factor 2.0	
Infiltration Coefficient Infiltration Coefficient	Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m)	Area (m^2) Inf. Area (m^2) Depth (m) Area (m^2) I	nf. Area (m²)
0.000 750.0 0.0 1.850	750.0 0.0 1.851 0.0	0.0
<u>Cellular Storage</u>	e Manhole: S77, DS/PN: S1.012	
Inve	ert Level (m) 131.750 Safety Factor 2.0	
Infiltration Coefficient Infiltration Coefficient	E Base (m/hr) 0.00000 Porosity 0.95 E Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m)	Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) I	nf. Area (m²)
0.000 1000.0 0.0 1.850	1000.0 0.0 1.851 0.0	0.0
<u>Cellular Storage</u>	Manhole: S89, DS/PN: S17.004	
Inve Infiltration Coefficient Infiltration Coefficient	ert Level (m) 131.500 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m)	Area (m^2) Inf. Area (m^2) Depth (m) Area (m^2) I	nf. Area (m²)
0.000 72.0 0.0 1.850	72.0 0.0 1.851 0.0	0.0

Roger Mullarkey & Associates						
Duncreevan	Kilternan Village					
Kilcock	Stage 3 Planning May'22					
Co. Kildare, Ireland		Micro				
Date 14/06/2022 18:16	Designed by R.M.	Desinado				
File Kilternan Planning BLOCKED Pla	Checked by	Diamaye				
Innovyze	Network 2020.1.3					

Simulation CriteriaAreal Reduction Factor 1.000Additional Flow - % of Total Flow 0.000Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)0.000Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 6 Number of Storage Structures 6 Number of Real Time Controls 0

	Sunthet	ic Painfa	11 Dotail	0			
Rainfall Model Region	Scotland and Ir	FSR M5- eland	-60 (mm) Ratio R	18.000 0.271	Cv Cv	(Summer) (Winter)	1.000
Margin for H	Flood Risk Warnin Analysis T DTS DVD Inertia	ng (mm) imestep 2 Status Status Status Status	.5 Second	d Increm	nent	15 (Extend	0.0 ed) OFF ON ON

Proiile(S)	Summer	and	Wlr	iter
Duration(s) (mins)				30
Return Period(s) (years)		2,	30,	100
Climate Change (%)		20,	20,	20

									Water			Pipe	
	US/MH							US/CL	Level	Flow /	Maximum	Flow	
PN	Name				Even	t		(m)	(m)	Cap.	Vol (m³)	(l/s)	Status
S1.000	S1	30	minute	2	year	Summer	I+20%	142.350	141.003	0.21	0.100	21.7	OK
S1.001	S2	30	minute	2	year	Summer	I+20%	142.020	140.632	0.46	0.368	43.8	OK
S1.002	S3	30	minute	2	year	Summer	I+20%	141.630	140.246	0.34	0.300	66.5	OK
S1.003	S4	30	minute	2	year	Summer	I+20%	139.700	138.347	0.47	0.222	84.8	OK
S2.000	S5	30	minute	2	year	Summer	I+20%	140.710	139.291	0.27	0.086	17.9	OK
S2.001	S6	30	minute	2	year	Summer	I+20%	139.880	138.475	0.22	0.106	34.2	OK
S2.002	S7	30	minute	2	year	Summer	I+20%	139.160	137.657	0.54	0.175	56.5	OK
S1.004	S8	30	minute	2	year	Summer	I+20%	138.950	136.899	0.55	0.278	153.0	OK
S1.005	S9	30	minute	2	year	Summer	I+20%	137.580	136.098	0.54	0.423	174.2	OK
S3.000	S10	30	minute	2	year	Summer	I+20%	136.510	135.141	0.09	0.063	7.7	OK
S3.001	S11	30	minute	2	year	Summer	I+20%	137.730	134.863	0.12	0.141	9.1	OK
S3.002	S12	30	minute	2	year	Summer	I+20%	137.800	134.828	0.38	0.316	30.1	OK
S3.003	S13	30	minute	2	year	Summer	I+20%	137.330	134.618	0.29	0.272	41.9	OK
S3.004	S14	30	minute	2	year	Summer	I+20%	136.650	134.427	0.45	0.688	56.4	OK
S3.005	S15	30	minute	2	year	Summer	I+20%	136.500	134.321	0.42	0.957	56.4	OK
S1.006	S16	30	minute	2	year	Summer	I+20%	136.880	134.287	0.61	1.466	234.9	OK
S1.007	S17	30	minute	2	year	Summer	I+20%	136.650	134.158	0.66	3.110	239.6	OK
S1.008	S18	30	minute	2	year	Summer	I+20%	136.530	133.974	0.56	2.378	270.8	OK
S4.000	S19	30	minute	2	year	Summer	I+20%	138.100	136.141	0.08	0.041	8.3	OK
S1.009	S20	30	minute	2	year	Summer	I+20%	135.920	133.609	0.63	4.766	302.5	OK
S5.000	S21	30	minute	2	year	Summer	I+20%	140.610	139.190	0.33	0.096	26.8	OK
S5.001	S22	30	minute	2	year	Summer	I+20%	139.230	136.944	0.36	0.101	34.9	OK
S5.002	S23	30	minute	2	year	Summer	I+20%	137.520	136.132	0.29	0.122	46.9	OK
S1.010	S24	30	minute	2	year	Summer	I+20%	136.850	133.278	0.49	2.960	352.4	OK
S1.011	S25	30	minute	2	year	Summer	I+20%	136.550	132.851	1.02	1.500	354.1	SURCHARGED
S6.000	S26	30	minute	2	year	Summer	I+20%	142.240	140.805	0.26	0.143	28.4	OK
S7.000	S27	30	minute	2	year	Summer	I+20%	142.000	140.891	0.20	0.097	15.8	OK
S7.001	S28	30	minute	2	year	Summer	I+20%	142.350	140.762	0.29	0.274	28.1	OK
S8.000	S29	30	minute	2	year	Summer	I+20%	142.000	140.663	0.17	0.088	15.8	OK
S8.001	S30	30	minute	2	year	Summer	I+20%	142.500	140.381	0.22	0.192	17.8	OK
S6.001	S31	30	minute	2	year	Summer	I+20%	142.810	140.226	0.37	0.378	98.4	OK
S6.002	S32	30	minute	2	year	Summer	I+20%	142.810	139.883	0.66	1.717	170.9	OK
S6.003	S33	30	minute	2	year	Summer	I+20%	142.500	139.634	0.90	2.609	180.9	OK

©1982-2020 Innovyze

Roger Mullarkey & Associates	Page 7	
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Mirro
Date 14/06/2022 18:16	Designed by R.M.	Desinano
File Kilternan Planning BLOCKED Pla	Checked by	Diamaye
Innovyze	Network 2020.1.3	

						Water			Pipe		
	US/MH				US/CL	Level	Flow /	Maximum	Flow		
PN	Name		Event		(m)	(m)	Cap.	Vol (m³)	(1/s)	Status	
S6.004	S34	30 minute 2	year Summer	I+20%	142.400	139.321	1.07	0.955	181.4	SURCHARGED	
S9.000	S35	30 minute 2	year Summer	1+20%	141.960	140./20	0.12	0.0/4	12.1	OK	
S9.001	S36	30 minute 2	year Summer	I+20%	142.200	140.474	0.14	0.137	14.8	OK	
S9.002	S37	30 minute 2	year Winter	I+20%	142.390	140.302	0.16	0.449	26.4	OK	
S10.000	S38	30 minute 2	year Summer	I+20%	143.000	141.606	0.26	0.114	26.8	OK	
S10.001	S39	30 minute 2	year Summer	I+20%	142.730	141.304	0.61	0.490	56.9	OK	
S10.002	S40	30 minute 2	year Winter	I+20%	142.750	140.302	0.31	0.339	60.1	OK	
S11.000	S41	30 minute 2	year Summer	I+20%	142.630	141.220	0.33	0.096	16.1	OK	
S11.001	S42	30 minute 2	year Summer	I+20%	142.380	140.830	0.39	0.153	26.1	OK	
S11.002	S43	30 minute 2	year Winter	I+20%	142.600	140.302	0.16	0.282	21.9	OK	
S9.003	S44	30 minute 2	year Winter	I+20%	142.350	140.302	0.00	87.566	0.1	SURCHARGED	-TANK 4
S9.004	S45	30 minute 2	year Summer	I+20%	141.940	139.893	0.25	0.193	24.0	OK	
S9.005	S46	30 minute 2	year Summer	I+20%	141.350	139.399	0.15	0.201	36.9	OK	
S9.006	S47	30 minute 2	year Winter	I+20%	142.000	139.242	0.22	2.540	43.3	OK	
S6.005	S48	30 minute 2	year Winter	I+20%	142.100	139.242	0.00	176.518	0.1	SURCHARGED	TANK 3
S6.006	S49	30 minute 2	year Summer	I+20%	142.030	138.685	0.37	0.185	14.8	OK	
S6.007	S50	30 minute 2	year Summer	I+20%	141.290	138.531	0.59	0.313	34.8	OK	
S6.008	S51	30 minute 2	year Summer	I+20%	139.150	137.783	0.49	0.183	52.5	OK	
S6.009	S52	30 minute 2	year Summer	I+20%	138.060	136.384	0.59	0.136	56.4	OK	
S12.000	S53	30 minute 2	year Summer	I+20%	141.650	140.417	0.22	0.104	23.6	OK	
S12.001	S54	30 minute 2	year Summer	I+20%	141.640	140.022	0.27	0.199	28.3	OK	
S12.002	S55	30 minute 2	year Winter	I+20%	142.080	139.923	0.43	0.500	29.8	OK	
S12.003	S56	30 minute 2	year Winter	I+20%	142.110	139.923	0.15	0.867	29.6	OK	
S12.004	S57	30 minute 2	year Winter	I+20%	141.750	139.923	0.00	27.183	0.1	SURCHARGED	TANK 5
S13.000	S58	30 minute 2	year Summer	I+20%	142.650	141.126	0.59	0.137	36.1	OK	
S12.005	S59	30 minute 2	year Summer	I+20%	141.700	139.544	0.48	0.206	48.2	OK	
S12.006	S60	30 minute 2	year Summer	1+20%	141.500	139.318	0.55	0.526	56.0	OK	
S12.00/	S61	30 minute 2	year Summer	1+20%	141.000	138.905	0.46	0.412	82.3	OK	
S14.000	S62	30 minute 2	year Summer	1+20%	141.530	140.115	0.30	0.090	26.0	OK	
S12.008	S63	30 minute 2	year Summer	1+20%	140.500	138.600	0.69	1.086	138./	OK	
S12.009	564 C(F	30 minute 2	year Summer	1+203 T+203	139.520	138.080	0.63	0.853	172 0	OK	
SI2.010	565	30 minute 2	year Summer	I+203 T+203	120.250	125 607	1 00	0.012	161 1	CUDCUADCED	
S12.011 915 000	267	30 minute 2	year Summer	17203 71208	142 690	1/1 175	0.59	0.799	27 0	OV	
S15.000	269	30 minute 2	year Summer	TT200	142.000	141.173	0.00	0.120	52 4	OK	
S15.001	200	30 minute 2	year Summer	TT200	142.440	130 605	0.29	0.129	72.9	OK	
S15.002	970	30 minute 2	year Summer	TT200	141.100	139.003	0.39	0.190	90 5	OK	
S15.003	971	30 minute 2	year Summer	TT200	130 790	135 306	0.47	0.210	109.5	OK	
g12 012	072	30 minute 2	year Winter	TT200	137 250	135 227	0.00	204 912	100.5		
S12.012	973	30 minute 2	year Summer	I+20% T+20⊱	137.230	13/ 957	0.00	0 608		SURCHARGE	ANK 2
S6.010	974	30 minute 2	year Summer	T+20%	136 750	132 696	0.00	0.000	67 /	OK	
S16 000	\$75	30 minute 2	year Summer	T+20%	134 250	133 141	0.40	0.123	21 1	OK	
S16 001	\$76	30 minute 2	year Summer	T+20%	134 250	132 828	0.05	0.123	26 1	OK	
S1 012	577	30 minute 2	year Summer	T+20%	134 500	132.020	0 00	346 826	0 4	SHRCHARGED	TANK 1
S1 013	578	30 minute 2	year Summer	T+20%	132 500	130 530	0 00	0 000	0 1	OK	
S1.014	579	30 minute 2	year Summer	T+20%	130.850	128.400	0.00	0.000	0.1	OK	
S1.015	580	30 minute 2	year Summer	T+20%	127.750	126.150	0.00	0.000	0.1	OK	
S1.016	S81	30 minute 2	year Summer	T+20%	127.000	125.390	0.00	0.000	0.1	OK	
S1.017	582	30 minute 2	vear Summer	I+2.0%	125.700	122.711	0.00	0.000	0.1	OK	
S1.018	S83	30 minute 2	year Summer	I+20%	123.500	122.321	0.00	0.000	0.1	OK	
S17.000	S84	30 minute 2	year Summer	I+20%	136.750	135.250	0.00	0.000	0.0	OK	
S17.001	S85	30 minute 2	year Summer	I+20%	136.750	134.836	0.01	0.002	0.4	OK	
S17.002	586	30 minute 2	vear Summer	I+20%	135.750	132.257	0.54	0.172	33.0	OK	
S17.003	S87	30 minute 2	vear Winter	I+20%	134.750	131.904	0.45	0.451	27.4	SURCHARGED	
S18.000	S88	30 minute 2	year Summer	I+20%	135.500	134.065	0.18	0.068	7.0	OK	
S17.004	S89	30 minute 2	year Winter	I+20%	134.750	131.904	0.00	28.879	0.1	SURCHARGED	
			_					K			

		-
Roger Mullarkey & Associates		Page 8
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Mirro
Date 14/06/2022 18:16	Designed by R.M.	
File Kilternan Planning BLOCKED Pla	Checked by	Diamacje
Innovyze	Network 2020.1.3	<u>.</u>
<u>30 year Return Period Summary of Cr</u>	itical Results by Maximum Level (Rank 1)	for Storm

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000
Hot Start (mins)Additional Flow - % of Total Flow 0.000
MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500Flow per Person per Day (l/per/day)0.000Foul Sewage per hectare (l/s)0.0000.0000.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 6 Number of Storage Structures 6 Number of Real Time Controls 0

Svnt	hetic Rainfa	all Detai	ls			
Rainfall Model Region Scotland and	FSR M5 d Ireland	5-60 (mm) Ratio R	18.000 0.271	Cv Cv	(Summer) (Winter)	1.000 1.000
Margin for Flood Risk Wa Analysi Iner	rning (mm) s Timestep : DTS Status DVD Status tia Status	2.5 Secon	d Incre	ment	15 (Extend	0.0 ed) OFF ON ON

Profile(s)	Summer	and	Wir	ter
Duration(s) (mins)				30
Return Period(s) (years)		2,	30,	100
Climate Change (%)		20,	20,	20

									Water			Pipe	
	US/MH							US/CL	Level	Flow /	Maximum	Flow	
PN	Name				Event			(m)	(m)	Cap.	Vol (m³)	(1/s)	Status
S1.000	S1	30	minute	30	year	Summer	I+20%	142.350	141.040	0.38	0.141	39.9	OK
S1.001	S2	30	minute	30	year	Summer	I+20%	142.020	140.722	0.95	0.847	89.7	OK
S1.002	S3	30	minute	30	year	Summer	I+20%	141.630	140.314	0.71	0.659	139.8	OK
S1.003	S4	30	minute	30	year	Summer	I+20%	139.700	138.441	0.99	0.449	179.8	OK
S2.000	S5	30	minute	30	year	Summer	I+20%	140.710	139.325	0.50	0.124	33.0	OK
S2.001	S6	30	minute	30	year	Summer	I+20%	139.880	138.521	0.44	0.189	68.6	OK
S2.002	S7	30	minute	30	year	Summer	I+20%	139.160	137.935	1.08	0.863	113.7	SURCHARGED
S1.004	S8	30	minute	30	year	Summer	I+20%	138.950	137.323	1.09	2.397	304.9	SURCHARGED
S1.005	S9	30	minute	30	year	Summer	I+20%	137.580	136.398	1.06	1.932	342.1	SURCHARGED
S3.000	S10	30	minute	30	year	Summer	I+20%	136.510	135.184	0.16	0.112	14.2	OK
S3.001	S11	30	minute	30	year	Summer	I+20%	137.730	135.172	0.31	2.352	22.8	SURCHARGED
S3.002	S12	30	minute	30	year	Summer	I+20%	137.800	135.163	0.77	1.342	61.2	SURCHARGED
S3.003	S13	30	minute	30	year	Summer	I+20%	137.330	135.062	0.52	2.341	75.3	SURCHARGED
S3.004	S14	30	minute	30	year	Summer	I+20%	136.650	134.939	0.83	4.319	103.6	SURCHARGED
S3.005	S15	30	minute	30	year	Summer	I+20%	136.500	134.831	0.80	3.267	107.5	SURCHARGED
S1.006	S16	30	minute	30	year	Summer	I+20%	136.880	134.718	1.12	2.888	433.5	SURCHARGED
S1.007	S17	30	minute	30	year	Summer	I+20%	136.650	134.536	1.21	6.736	441.3	SURCHARGED
S1.008	S18	30	minute	30	year	Summer	I+20%	136.530	134.342	1.01	6.104	492.1	SURCHARGED
S4.000	S19	30	minute	30	year	Summer	I+20%	138.100	136.156	0.14	0.058	15.3	OK
S1.009	S20	30	minute	30	year	Summer	I+20%	135.920	133.922	1.14	15.031	546.2	SURCHARGED
S5.000	S21	30	minute	30	year	Summer	I+20%	140.610	139.228	0.60	0.139	49.4	OK
S5.001	S22	30	minute	30	year	Summer	I+20%	139.230	136.991	0.69	0.154	66.9	OK
S5.002	S23	30	minute	30	year	Summer	I+20%	137.520	136.189	0.58	0.202	93.0	OK
S1.010	S24	30	minute	30	year	Summer	I+20%	136.850	133.498	0.87	8.266	625.6	OK
S1.011	S25	30	minute	30	year	Summer	I+20%	136.550	133.103	1.82	2.798	632.4	SURCHARGED
S6.000	S26	30	minute	30	year	Summer	I+20%	142.240	140.848	0.47	0.205	52.3	OK
S7.000	S27	30	minute	30	year	Summer	I+20%	142.000	140.926	0.37	0.137	29.0	OK
S7.001	S28	30	minute	30	year	Summer	I+20%	142.350	140.817	0.57	0.590	55.1	OK
S8.000	S29	30	minute	30	year	Summer	I+20%	142.000	140.701	0.31	0.131	28.9	OK
S8.001	S30	30	minute	30	year	Summer	I+20%	142.500	140.650	0.52	2.048	42.2	SURCHARGED
S6.001	S31	30	minute	30	year	Summer	I+20%	142.810	140.546	0.63	4.871	169.0	SURCHARGED
S6.002	S32	30	minute	30	year	Summer	I+20%	142.810	140.401	1.14	8.788	297.8	SURCHARGED
S6.003	S33	30	minute	30	year	Summer	I+20%	142.500	139.975	1.59	6.606	318.9	SURCHARGED

©1982-2020 Innovyze

Roger Mullarkey & Associates						
Duncreevan	Kilternan Village					
Kilcock	Stage 3 Planning May'22					
Co. Kildare, Ireland		Mirro				
Date 14/06/2022 18:16	Designed by R.M.	Desinado				
File Kilternan Planning BLOCKED Pla	Checked by	Diamaye				
Innovyze	Network 2020.1.3					

DN	US/MH		F	ront		US/CL	Water Level	Flow /	Maximum	Pipe Flow	Status	
PN	Name		EV	ent		(m)	(m)	Cap.	VOL (m°)	(1/S)	Status	
S6.004	S34	30 minute	30 ye	ear Winter	I+20%	142.400	139.736	1.66	3.412	282.4	SURCHARGED	
S9.000	S35	30 minute	30 ye	ear Summer	I+20%	141.960	140.747	0.22	0.104	22.3	OK	
S9.001	S36	30 minute	30 ye	ear Winter	I+20%	142.200	140.596	0.21	0.607	22.0	OK	
S9.002	S37	30 minute	30 ye	ear Winter	I+20%	142.390	140.596	0.30	1.491	50.8	SURCHARGED	
S10.000	S38	30 minute	30 ye	ear Summer	I+20%	143.000	141.649	0.48	0.163	49.4	OK	
S10.001	S39	30 minute	30 ye	ear Summer	I+20%	142.730	141.513	1.22	1.949	112.9	SURCHARGED	
S10.002	S40	30 minute	30 ye	ear Winter	I+20%	142.750	140.640	0.60	0.823	117.4	SURCHARGED	
S11.000	S41	30 minute	30 ye	ear Summer	I+20%	142.630	141.259	0.60	0.140	29.4	OK	
SII.001	S4Z	30 minute	30 ye	ear Summer	1+20%	142.380	140.901	0.76	0.268	51.2	UK	
SII.002	543 C44	30 minute	20 Ye	ear Summer	1+203	142.000	140.596	0.39	150 401	52.9	SURCHARGE	ANK 4
S9.003	S44 S/5	30 minute	30 ye	ear Summer	17203 T+208	1/1 9/0	130 055	0.00	139.491	5/ 1	OKCHARGE	
S9 005	S45 S46	30 minute	30 yr	ear Summer	I+20%	141 350	139 649	0.34	1 809	82 0	OK OK	
59.006	S47	30 minute	30 v	ear Summer	T+20%	142.000	139.649	0.53	8.783	105.1	SURCHARGED	
\$6.005	S48	30 minute	30 ve	ear Summer	T+20%	142.100	139.649	0.00	313.378	0.		ANK 3
S6.006	S49	30 minute	30 ve	ear Summer	I+20%	142.030	139.016	0.72	1.074	28.9	SURCHARGED	
S6.007	S50	30 minute	30 ye	ear Summer	I+20%	141.290	138.916	1.16	1.577	68.7	SURCHARGED	
S6.008	S51	30 minute	30 ye	ear Summer	I+20%	139.150	137.853	0.99	0.394	105.4	OK	
S6.009	S52	30 minute	30 ye	ear Summer	I+20%	138.060	136.693	1.19	0.514	113.1	SURCHARGED	
S12.000	S53	30 minute	30 ye	ear Summer	I+20%	141.650	140.456	0.41	0.148	43.5	OK	
S12.001	S54	30 minute	30 ye	ear Winter	I+20%	141.640	140.259	0.40	1.606	41.8	SURCHARGED	
S12.002	S55	30 minute	30 ye	ear Winter	I+20%	142.080	140.241	0.80	1.526	55.3	SURCHARGED	
S12.003	S56	30 minute	30 ye	ear Summer	I+20%	142.110	140.192	0.34	1.382	66.7	SURCHARGED	
S12.004	S57	30 minute	30 ye	ear Winter	I+20%	141.750	140.192	0.00	48.558	₹ .1	SURCHARGE	ANK 5
S13.000	S58	30 minute	30 ye	ear Summer	I+20%	142.650	141.303	1.05	0.337	63.8	SURCHARGED	
S12.005	S59	30 minute	30 ye	ear Summer	I+20%	141.700	139.791	0.87	0.696	86.9	SURCHARGED	
S12.006	S60	30 minute	30 ye	ear Summer	I+20%	141.500	139.629	0.96	2.291	98.0	SURCHARGED	
S12.00/	S61	30 minute	30 ye	ear Summer	1+20%	141.000	140 150	0.81	3.126	146.1	SURCHARGED	
S14.000	562	30 minute	30 ye	ear Summer	1+208 T+208	141.530	120 104	1 10	0.131	47.9	UK	
S12.008	503	30 minute	30 V	ear Summer	1+203 T+208	130 520	130 307	1 09	3 796	239.4	SURCHARGED	
S12.009	565	30 minute	30 yr	ear Summer	T+20%	138 600	137 428	1 02	1 692	205.1	SURCHARGED	
S12.010	566	30 minute	30 V	ear Summer	T+20%	138 250	136 225	1 76	1 750	289 5	SURCHARGED	
S15.000	S67	30 minute	30 ve	ear Summer	T+20%	142.680	141.308	1.06	0.286	51.1	SURCHARGED	
S15.001	S68	30 minute	30 ve	ear Summer	I+20%	142.440	140.869	0.59	0.256	104.2	OK	
S15.002	S69	30 minute	30 ye	ear Summer	I+20%	141.180	139.682	0.79	0.371	148.8	OK	
S15.003	S70	30 minute	30 ye	ear Summer	I+20%	140.230	138.773	0.97	0.438	186.3	OK	
S15.004	S71	30 minute	30 ye	ear Summer	I+20%	138.780	135.672	1.11	0.726	227.2	SURCHARGED	
S12.012	S72	30 minute	30 ye	ear Winter	I+20%	137.250	135.452	0.00	376.430	€.1	SURCHARGE	ANK 2
S6.010	S73	30 minute	30 ye	ear Summer	I+20%	137.750	135.191	1.30	1.105	119.7	SURCHARGED	
S6.011	S74	30 minute	30 ye	ear Summer	I+20%	136.750	132.809	0.81	0.435	137.2	OK	
S16.000	S75	30 minute	30 ye	ear Summer	I+20%	134.250	133.173	0.16	0.168	38.8	OK	
S16.001	S76	30 minute	30 ye	ear Summer	I+20%	134.250	132.874	0.26	0.712	49.8	OK	
S1.012	S77	30 minute	30 ye	ear Summer	I+20%	134.500	132.418	0.00	638.117	0.€	SURCHARGED	
S1.013	S78	30 minute	30 ye	ear Summer	I+20%	132.500	130.531	0.00	0.000	0.1	OK	
S1.014	579	30 minute	30 ye	ear Summer	1+20%	107 750	128.400	0.00	0.000	0.1	OK	
SI.UIS 91 016	50U 001	30 minute	30 V	ear Summer	⊥+∠Uる T+200	127 000	125 200	0.00	0.000	0.1	OK OV	
S1.010 S1 017	201 901	30 minute	30 ye	ar Summor	⊥+203 T+209	125 700	120.000	0.00	0.000	0.1	OK OV	
S1 012	502	30 minute	30 ye	ar Summer	1+200 T+200	123 500	122 322	0.00	0.000	0.1	0r	
S17 000	584	30 minute	30 yr	Par Summer	±,20% T+20%	136 750	135 250	0 00	0 000	0.1	0K OV	
S17.001	585	30 minute	30 V	ear Summer	T+20%	136.750	134.844	0.01	0.014	0.8	0K	
S17.002	S86	30 minute	30 ve	ear Summer	I+20%	135.750	132.416	1.21	0.351	74.3	SURCHARGED	
s17.003	S87	30 minute	30 ve	ear Summer	I+20%	134.750	132.245	1.18	1.209	72.5	SURCHARGED	
S18.000	S88	30 minute	30 ye	ear Summer	I+20%	135.500	134.090	0.33	0.096	12.9	OK	
S17.004	S89	30 minute	30 ye	ear Winter	I+20%	134.750	132.244	0.00	52.559	0.1	SURCHARGED	

TANK 6

Roger Mullarkey & Associates						
Duncreevan	Kilternan Village					
Kilcock	Stage 3 Planning May'22					
Co. Kildare, Ireland		Micro				
Date 14/06/2022 18:16	Designed by R.M.					
File Kilternan Planning BLOCKED Pla	Checked by	Diamage				
Innovyze	Network 2020.1.3					
100 year Return Period Summary of Cr	itical Results by Maximum Level (Rank 1)	for Storm				
s	imulation Criteria					

	Indiatae.	ton criteria	
Areal Reduction Factor	1.000	Additional Flow - % of Total Flow 0.0	000
Hot Start (mins)	0	MADD Factor * 10m³/ha Storage 2.0	000
Hot Start Level (mm)	0	Inlet Coeffiecient 0.8	300
Manhole Headloss Coeff (Global)	0.500	Flow per Person per Day (l/per/day) 0.0	000
Foul Sewage per hectare (l/s)	0.000		

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 6 Number of Storage Structures 6 Number of Real Time Controls 0

Synthe	tic Rai	nfall I	Detai	ls			
Rainfall Model	FSR	M5-60	(mm)	18.000	Cv	(Summer)	1.000
Region Scotland and I	reland	Rat	io R	0.271	Cv	(Winter)	1.000
Margin for Flood Risk Warn	ing (mm)				15	0.0
Analysis '	Timeste	p 2.5 \$	Secon	d Incre	ment	t (Extend	ed)
DT	S Statu	s					OFF
DV	D Statu	s					ON
Inertia	a Statu	s					ON

Profile(s)	Summer	and	Win	iter
Duration(s) (mins)				30
Return Period(s) (years)		2,	30,	100
Climate Change (%)		20,	20,	20

									Water			Pipe	
	US/MH							US/CL	Level	Flow /	Maximum	Flow	
PN	Name			1	Event			(m)	(m)	Cap.	Vol (m³)	(1/s)	Status
S1.000	S1	30	minute	100	year	Summer	I+20%	142.350	141.062	0.49	0.166	52.1	OK
S1.001	S2	30	minute	100	year	Summer	I+20%	142.020	140.929	1.17	2.370	110.8	SURCHARGED
S1.002	S3	30	minute	100	year	Summer	I+20%	141.630	140.357	0.87	0.974	171.0	OK
S1.003	S4	30	minute	100	year	Summer	I+20%	139.700	138.996	1.17	2.172	211.4	SURCHARGED
S2.000	S5	30	minute	100	year	Summer	I+20%	140.710	139.346	0.65	0.148	43.0	OK
S2.001	S6	30	minute	100	year	Summer	I+20%	139.880	138.889	0.57	1.299	88.9	SURCHARGED
S2.002	S7	30	minute	100	year	Summer	I+20%	139.160	138.686	1.17	3.426	123.0	SURCHARGED
S1.004	S8	30	minute	100	year	Summer	I+20%	138.950	138.020	1.25	6.515	348.8	SURCHARGED
S1.005	S9	30	minute	100	year	Summer	I+20%	137.580	136.854	1.19	4.420	384.9	SURCHARGED
S3.000	S10	30	minute	100	year	Summer	I+20%	136.510	135.885	0.20	0.904	17.4	SURCHARGED
S3.001	S11	30	minute	100	year	Summer	I+20%	137.730	135.865	0.47	3.829	34.4	SURCHARGED
S3.002	S12	30	minute	100	year	Summer	I+20%	137.800	135.849	0.83	2.119	66.0	SURCHARGED
S3.003	S13	30	minute	100	year	Summer	I+20%	137.330	135.733	0.54	3.303	78.9	SURCHARGED
S3.004	S14	30	minute	100	year	Summer	I+20%	136.650	135.623	0.83	5.299	103.8	SURCHARGED
S3.005	S15	30	minute	100	year	Summer	I+20%	136.500	135.524	0.82	4.259	110.8	SURCHARGED
S1.006	S16	30	minute	100	year	Summer	I+20%	136.880	135.413	1.28	5.267	496.7	SURCHARGED
S1.007	S17	30	minute	100	year	Summer	I+20%	136.650	135.181	1.40	7.897	510.5	SURCHARGED
S1.008	S18	30	minute	100	year	Summer	I+20%	136.530	134.938	1.16	7.241	563.7	SURCHARGED
S4.000	S19	30	minute	100	year	Summer	I+20%	138.100	136.165	0.18	0.068	20.0	OK
S1.009	S20	30	minute	100	year	Summer	I+20%	135.920	134.410	1.33	19.627	634.0	SURCHARGED
S5.000	S21	30	minute	100	year	Summer	I+20%	140.610	139.254	0.79	0.168	64.5	OK
S5.001	S22	30	minute	100	year	Summer	I+20%	139.230	137.021	0.90	0.188	87.3	OK
S5.002	S23	30	minute	100	year	Summer	I+20%	137.520	136.222	0.76	0.248	121.5	OK
S1.010	S24	30	minute	100	year	Summer	I+20%	136.850	133.908	1.06	13.088	759.4	SURCHARGED
S1.011	S25	30	minute	100	year	Summer	I+20%	136.550	133.311	2.23	3.690	774.2	SURCHARGED
S6.000	S26	30	minute	100	year	Summer	I+20%	142.240	141.357	0.59	0.934	64.8	SURCHARGED
S7.000	S27	30	minute	100	year	Summer	I+20%	142.000	141.478	0.46	0.761	36.8	SURCHARGED
S7.001	S28	30	minute	100	year	Summer	I+20%	142.350	141.398	0.64	2.452	61.4	SURCHARGED
S8.000	S29	30	minute	100	year	Summer	I+20%	142.000	141.457	0.41	0.986	37.9	SURCHARGED
S8.001	S30	30	minute	100	year	Summer	I+20%	142.500	141.348	0.55	3.601	44.8	SURCHARGED
S6.001	S31	30	minute	100	year	Summer	I+20%	142.810	141.231	0.73	9.921	197.1	SURCHARGED
S6.002	S32	30	minute	100	year	Summer	I+20%	142.810	141.008	1.36	9.789	353.4	SURCHARGED
S6.003	S33	30	minute	100	year	Summer	I+20%	142.500	140.434	1.89	7.419	378.8	SURCHARGED

©1982-2020 Innovyze

Roger Mullarkey & Associates		Page 11
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning May'22	
Co. Kildare, Ireland		Mirro
Date 14/06/2022 18:16	Designed by R.M.	Desinano
File Kilternan Planning BLOCKED Pla	Checked by	Diamage
Innovyze	Network 2020.1.3	

							Water			Pipe		
	US/MH					US/CL	Level	Flow /	Maximum	Flow		
PN	Name		Eve	nt		(m)	(m)	Cap.	Vol (m³)	(l/s)	Status	
S6.004	S34	30 minute	100 ve	ar Winter	I+20%	142.400	140.005	1.94	3.823	329.8	SURCHARGED	
\$9.000	\$35	30 minute	100 ve	r Summer	T+20%	141.960	140.792	0.29	0.155	29.1	OK	
\$9,001	536	30 minute	100 ve	r Summer	T+20%	142,200	140.792	0.35	1.855	36.7	SURCHARGED	
\$9.002	S37	30 minute	100 ve	ar Summer	T+20%	142.390	140.792	0.50	1.839	84.1	SURCHARGED	
S10.000	538	30 minute	100 ve	r Summer	T+20%	143.000	141.838	0.61	0.377	62.1	SURCHARGED	
S10.001	539	30 minute	100 ve	r Summer	T+20%	142.730	141.699	1.56	3.007	144.4	SURCHARGED	
S10.002	S40	30 minute	100 ve	r Winter	T+20%	142.750	140.847	0.76	1,119	148.6	SURCHARGED	
S11.000	S41	30 minute	100 ve	r Summer	T+20%	142.630	141.285	0.79	0.170	38.4	OK	
S11.001	S42	30 minute	100 ve	r Summer	T+20%	142.380	140.950	1.00	0.432	67.1	OK 011	
S11.002	s43	30 minute	100 ve	r Summer	I+20%	142.600	140.792	0.50	1.160	68.0	SURCHARGE	
\$9.003	S44	30 minute	100 ve	ar Summer	T+20%	142.350	140.792	0.00	206.389	< +	SURCHARGE	ANK 4
\$9.004	S45	30 minute	100 ve	r Summer	T+20%	141.940	139.987	0.74	0.560	70.5	OK	
S9.005	S46	30 minute	100 ve	r Winter	I+20%	141.350	139.919	0.35	4.234	84.6	SURCHARGED	
S9.006	S47	30 minute	100 ve	ar Winter	I+20%	142.000	139.919	0.50	9.308	100.0	SURCHARGE	
S6.005	S48	30 minute	100 ve	ar Winter	I+20%	142.100	139.919	0.00	403.448	0.1	SURCHARGEI	TANK 3
S6.006	S49	30 minute	100 ve	ar Summer	T+20%	142.030	139.863	0.86	2.033	34.7	SURCHARGED	
S6.007	S50	30 minute	100 ve	r Summer	T+20%	141.290	139.725	1.39	2,492	82.5	SURCHARGED	
S6.008	S51	30 minute	100 ve	r Summer	T+20%	139.150	138.311	1.13	2.158	120.1	SURCHARGED	
S6.009	S52	30 minute	100 ve	r Summer	I+20%	138.060	136.890	1.34	0.868	128.2	SURCHARGED	
S12.000	S53	30 minute	100 ve	ar Winter	T+20%	141.650	140.492	0.42	0.189	44.5	OK	
S12.001	S54	30 minute	100 ve	r Winter	T+20%	141.640	140.455	0.48	2,918	50.4	SURCHARGED	
S12.002	S55	30 minute	100 ve	r Winter	I+20%	142.080	140.427	0.92	1.736	64.2	SURCHARGED	
s12.003	S56	30 minute	100 ve	r Summer	I+20%	142.110	140.374	0.41	1.643	81.6	SURCHARGED	
S12.004	S57	30 minute	100 ve	r Summer	I+20%	141.750	140.374	0.00	62.633	€.1	SURCHARGE	ANK 5
S13.000	S58	30 minute	100 ve	r Summer	I+20%	142.650	141.846	1.27	0.951	77.4	SURCHARGED	
s12.005	S59	30 minute	100 ve	r Summer	I+20%	141.700	140.837	0.94	3.258	94.4	SURCHARGED	
S12.006	S60	30 minute	100 ve	ar Summer	I+20%	141.500	140.643	1.13	4.147	116.0	SURCHARGED	
S12.007	S61	30 minute	100 ye	ar Summer	I+20%	141.000	140.264	0.90	5.119	162.8	SURCHARGED	
S14.000	S62	30 minute	100 ye	ar Summer	I+20%	141.530	140.270	0.72	0.265	62.5	SURCHARGED	
S12.008	S63	30 minute	100 ve	ar Summer	I+20%	140.500	139.989	1.35	7.727	272.2	SURCHARGED	
S12.009	S64	30 minute	100 ye	ar Summer	I+20%	139.520	139.065	1.26	6.526	331.0	SURCHARGED	
S12.010	S65	30 minute	100 ye	ar Summer	I+20%	138.600	137.753	1.19	3.910	346.7	SURCHARGED	
S12.011	S66	30 minute	100 ye	ar Summer	I+20%	138.250	136.526	2.04	2.807	336.2	SURCHARGED	
S15.000	S67	30 minute	100 yea	ar Summer	I+20%	142.680	141.521	1.37	0.527	66.3	SURCHARGED	
S15.001	S68	30 minute	100 ye	ar Summer	I+20%	142.440	140.901	0.76	0.329	135.4	OK	
S15.002	S69	30 minute	100 yea	ar Summer	I+20%	141.180	140.165	0.96	2.020	180.8	SURCHARGED	
S15.003	S70	30 minute	100 ye	ar Summer	I+20%	140.230	139.278	1.16	1.963	221.6	SURCHARGED	
S15.004	S71	30 minute	100 ye	ar Summer	I+20%	138.780	135.806	1.33	0.917	271.3	SURCHARGED	
S12.012	S72	30 minute	100 yea	ar Winter	I+20%	137.250	135.607	0.00	490.973	\leftarrow 0.1	SURCHARGED	- <mark>TANK 2</mark>
S6.010	S73	30 minute	100 ye	ar Summer	I+20%	137.750	135.269	1.47	1.194	135.3	SURCHARGED	
S6.011	S74	30 minute	100 ye	ar Summer	I+20%	136.750	132.839	0.91	0.479	155.5	OK	
S16.000	S75	30 minute	100 ye	ar Summer	I+20%	134.250	133.192	0.21	0.196	50.6	OK	
S16.001	S76	30 minute	100 ye	ar Summer	I+20%	134.250	132.899	0.33	0.921	65.0	OK	
S1.012	S77	30 minute	100 ye	ar Winter	I+20%	134.500	132.615	0.00	832.259	0 🗲	SURCHARGED	- IANK 1
S1.013	S78	30 minute	100 yea	ar Winter	I+20%	132.500	130.531	0.00	0.000	0.1	OK	
S1.014	S79	30 minute	100 yea	ar Winter	I+20%	130.850	128.400	0.00	0.000	0.1	OK	
S1.015	S80	30 minute	100 yea	ar Summer	I+20%	127.750	126.151	0.00	0.000	0.1	OK	
S1.016	S81	30 minute	100 yea	ar Summer	I+20%	127.000	125.390	0.00	0.000	0.1	OK	
S1.017	S82	30 minute	100 yea	ar Summer	I+20%	125.700	122.711	0.00	0.000	0.1	OK	
S1.018	S83	30 minute	100 yea	ar Summer	I+20%	123.500	122.322	0.00	0.000	0.1	OK	
S17.000	S84	30 minute	100 yea	ar Summer	I+20%	136.750	135.250	0.00	0.000	0.0	OK	
S17.001	S85	30 minute	100 yea	ar Summer	I+20%	136.750	134.849	0.02	0.021	1.1	OK	
S17.002	S86	30 minute	100 yea	ar Summer	I+20%	135.750	132.480	1.58	0.424	96.7	SURCHARGED	
S17.003	S87	30 minute	100 yea	ar Summer	I+20%	134.750	132.468	1.52	1.739	93.1	SURCHARGED	
S18.000	S88	30 minute	100 yea	ar Summer	I+20%	135.500	134.104	0.43	0.112	16.8	OK	
S17.004	S89	30 minute	100 ye	ar Winter	I+20%	134.750	132.467	0.00	68.045	0.1	SURCHARGED	
												6

Appendix 12.2

Interception & Sample of Swale Calculations

304

TOTAL

	PASS/FAIL		VASS	PASS	1050	9.655.	PASS	0,465			PROVIDED	
-	UB-CATCHMENT WTERCEPTION	REQUIRED (m ³)	116.80	62,64	73.48	22.52	14.80	6.52	CONTRACTOR OF CONTRACTOR	TEPTION SUMMAR	REQUIRED	
	SUB-CATCHMENT SU INTERCEPTION	PROVIDED (m ³)	370,2	302.8	422.9	5.03	109.0	102.0	(NITCHO)	INIEN	MAIN CATCHMENT REFRENCE	Construction and and and and and and and and and an
	Rainwater Butts 1 (2001)	(Em)	12.20	12.60	5.00	4.20	0.40	0.00				
	ROOF (m ³)	INTENSIVE	0.00	0/00	37,30	00'0	46.48	55.65				
	GREEN	EXTENSIVE	0.00	0.00	43.90	0.00	000	31.78				
"E*	BIO-RETENTION	(E)	0,00	00/0	5.00	00'0	0.00	000				
ON SUMMARY TABLE*	SWALES (m ³)	7.43	2.11	138	0.51	0.76	0.51					
RCEPTION SU	TREE PITS (m ³)		12.50	17.50	15.00	5.00	1.25	0.00				
INTE	LEMENT (m ³)	FILTER DRAINS	30.96	30.02	6.62	14.18	0.00	0.00				
	NE BELOW SuDS EI	PERMEABLE PAVING	127.13	105.57	178.83	30.38	48.60	0.00				
	VOIDS IN STO	TANK	180.00	135.00	69.84	45.00	11.52	14.04	bendix			
	INTERCEPTION REOUIRED (m ³)	*Area x 0.8 x 5mm	116.80	62.64	73.48	27.52	14.80	8.52	nt in main report app			
	DRAINED PAVED	АКЕА (На)	2.92	1.57	1.84	0.69	0.37	0.21	r each sub-catchmer			
	SUB-CATCHMENT	KEFEKENCE	A	8	U	٥	Э		alculation tables for			
	MAIN CATCHMENT	REFERENCE			1			2	"Refer to detailed c			

INTERCEPTION - Catchment A												
Paved Surfaces connected to	Volun	ne or interce	ption	Gros	s Paved Area x 5m	nm x 0.8 (GD	SDS E2.1.1 - Criterion 1)					
the drainage system (Ha) = 2.92	R	equired (m ³	')	116.8								
Volume of Interception Provided (m ³)	Length	Width (m)	Area (m²)	Quantity	Stone Depth (m)	Void Ratio	Volume (m ³)					
Voids of stone below Attenuation Tank			1,000		0.45	0.4	180.0					
Voids of stone below Permeable Paving overflow			2,825		0.15	0.3	127.1					
Voids of stone below Filter Drain overflow	430	0.6			0.3	0.4	31.0					
Rainwater Butts (2001) @ 2No.per block	1		0.2	61		1	12.2					
Voids of stone below Swale overflow	275	0.45			0.15	0.4	7.4					
Tree Pit			12.5	10	0.1	1	12.5					
Bio-Retention			12.5	0	0.1	1	0.0					
Green Roof Intensive			0		0.2	0.35	0,0					
Green Roof Extensive			ø		0.08	0.35	0.0					
		ſ	Vol	ume of In	terception Provi	ded (m ³) =	370.2					
K			116.8									
1				Interce	ption provided :	Required	OK					

	INTERCEPTION - Catchment B												
Paved Surfaces connected to the drainage system (Ha) = 1.57	Volun	equired (m	eption ¹)	Gros 62.6	oss Paved Area x Smm x 0.8 (GDSDS E2.1.1 - Crite			2					
Volume of Interception Provided (m ³)	Length	Width (m)	Area (m²)	Quantity	Stone Depth (m)	Void Ratio	Volume (m ³)						
Voids of stone below Attenuation Tank			750		0.45	0.4	:	135.0					
Voids of stone below Permeable Paving overflow			2,346		0.15	0.3	:	105.6					
Voids of stone below Filter Drain overflow	417	0.6			0.3	0.4		30.0					
Rainwater Butts (2001) @ 2No.per block	1		0.2	63		1		12.6					
Voids of stone below Swale overflow	78	0.45			0.15	0.4		2.1					
Tree Pit			12.5	14	0.1	1		17.5					
Bio-Retention			12.5	0	0.1	1		0.0					
Green Roof Intensive			0		0.2	0.35		0.0					
Green Roof Extensive			0		0.08	0.35		0.0					
		1	Vo	ume of In	terception Provid	ded (m ³) =	3	302.8					
			Vol	ume of Int	erception Requi	red (m*) =		62.6					
				Interce	ption provided >	Required	OK						

INTERCEPTION - Catchment C												
Paved Surfaces connected to the drainage system (Ha) = 1.84	Vol	Re	e of interc equired (m	eption 1)	Gros 73.5	s Paved Area x Smir	1 x 0.8 (GDSDS E2	1.1 Criterion 1)				
Volume of Interception Provided (m ⁸)	Length		Width (m)	Area (m²)	Quantity	Stone Depth (m) \	oid Ratio Volum	ne (m ⁸)				
Voids of stone below Attenuation Tank				388		0.45	0.4	69.8				
Voids of stone below Permeable Paving overflow				3,974		0.15	0.3	178.8				
Voids of stone below Filter Drain overflow		92	0.6			0.3	0.4	6.6				
Rainwater Butts (2001) @ 2No.per block		1		0.2	23		1	5.0				
Voids of stone below Swale overflow		51	0.45			0.15	0.4	1.4				
Tree Pit				12.5	12	0,1	1	15.0				
Bio-Retention				12.5	1 4	0.1	1	5.0				
Green Roof Intensive				1,390		0.2	0.35	97.3				
Green Roof Extensive				1,568		0.08	0.35	43.9				
				Vol Vol	ume of In ume of In	terception Provide	ed (m ³) = ed (m ³) =	422.9 73.5				

	INTERCEPTION - Catchment D												
Paved Surfaces connected to the drainage system (Ha) = 0.69	Volum	eption 1 ¹)	Gros 27.5	s Paved Area x 5mm	2.1.1 - Criterion 1)								
Volume of Interception Provided (m ³)	Length	Width (m)	Area (m ²)	Quantity	Stone Depth (m) V	old Ratio Volu	me (m ³)						
Voids of stone below Attenuation Tank.			250		0.45	0.4	45.0						
Voids of stone below Permeable Paving overflow			675		0.15	0.3	30.4						
Voids of stone below Filter Drain overflow	197	0.6			0.3	0.4	14.2						
Rainwater Butts (2001) @ 2No.per block	1	11.	0.2	21		1	4.2						
Voids of stone below Swale overflow	19	0.45	Sec. 17		0.15	0.4	0.5						
Tree Pit.			12.5	1 I I A	0.1	1	5.0						
Bio-Retention			12.5	0	0.1	1	- 0.0						
Green Roof Intensive			0		0.2	0.35	0.0						
Green Roof Extensive			0		0.08	0.35	0.0						
		1.0	Vol	ume of In	terception Provide	ed (m ³) =	99.3						
			Vol	ume of Int	27.5								
			1.00	Interce	ption provided > I	Required	OK						

	INT	ERCEP	TION	- Catchi	ment E				
Paved Surfaces connected to the drainage system (Ha) = 0.37	Volu	me of I Require	ed (m	eption ³)	Gros 14.8	SDS E2.1.1 - Criter	100-1)		
Volume of Interception Provided (m ³)	Length	Widt	h (m)	Area (m²)	Quantity	Stone Depth (m)	Void Ratio	Volume (m ³)	
Voids of stone below Attenuation Tank				64		0.45	0.4		11.5
Voids of stone below Permeable Paving overflow				1,080		0.15	0.3		48.6
Voids of stone below Filter Drain overflow		0	0.6			0.3	0.4		0.0
Rainwater Butts (2001) @ 2No.per block		1		0.2	2		1		0.4
Voids of stone below Swale overflow	2	8	0.45			0.15	0.4		0.8
Tree Pit				12.5	1	0.1	1		1.3
Bio-Retention				12.5	0	0.1	1		0.0
Green Roof Intensive				664		0.2	0.35		46.5
Green Roof Extensive				0		0.08	0.35		0.0
			1	Vol	ume of In	terception Provi	ded (m ³) =		109.0
			Volume of Interception Required (m ³) =						
					Interce	ption provided :	> Required	OK	

INTERCEPTION - Catchment 2									
Paved Surfaces connected to the drainage system (Ha) = 0.21	Volume of Interception Required (m ³)			Gross Paved Area x 5mm x 0.8 (GDSDS E2.1.1 - 0 8.5			ISDS E2.1.1 - Criter	non 1}	
Volume of Interception Provided (m ³)	Length		Width (m)	Area (m²)	Quantity	Stone Depth (m)	Void Ratio	Volume (m ⁸)	24
Voids of stone below Attenuation Tank				78		0.45	0,4		14.0
Voids of stone below Permeable Paving overflow				ń		0.15	0.3		0.0
Voids of stone below Filter Drain overflow		σ	0.5			0.3	0.4		0.0
Rainwater Butts (2001) @ 2No.per block		1		0.2	9	2	1		0.0
Voids of stone below Swale overflow		19	0.45			0.15	0.4	ĥ	0.5
Tree Pit				12.5	0	0.1	1		0.0
Bio-Retention				12.5	0	1.0	1		0.0
Green Roof Intensive				795		0.2	0.35		55.7
Green Roof Extensive				1,135		0.08	0.35		31.8
				Volume of Interception Provided (m ³) =					102.0
					Interception provided > Required			OK	

	Project Kilternan Vilage				Job Ref. 2104		
Roger Mullarkey & Associates			Sheet no./rev.				
Duncreevan	Swale 1				1		
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date	
SWALE AND FILTER STRIP DES	ign						
In accordance with CIRIA public	ation C753 - The	e SUDS Manua	I		Tedds calcula	ition version	
Swale details							
Width of swale base		w = 0.450 m					
Longitudinal gradient of swale		S = 0.020					
Side slope gradient of swale		s = 0.330					
Manning number		n = 0.25					
Length of swale		L = 20 m	I				
	_		-60 50▲				
1							
3							
		← 450 →	I				
		—1725——					
	0						
	01055	Section of Sw	ale				
Design rainfall intensity							
Location of catchment area		Other					
Storm duration		D = 1 hr					
Return period		Period = 100 y	r				
Ratio 60 min to 2 day rainfall of 5 y	/r return period	r = 0.271					
5-year return period rainfall of 60 r	ninutes duration	M5_60min = 1	8.0 mm				
Increase of rainfall intensity due to							
	global warming	$p_{climate} = 20 \%$					
Factor Z1 (Wallingford procedure)	global warming	Pclimate = 20 % Z1 = 1.00					
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m	global warming eturn period	Pclimate = 20 % Z1 = 1.00 M5_1hr _i = Z1 >	× M5_60min × (1	+ p _{climate}) = 21.6	6 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year re Factor Z2 (Wallingford procedure)	global warming eturn period	pclimate = 20 % Z1 = 1.00 M5_1hri = Z1 > Z2 = 1.92	< M5_60min × (1	+ p _{climate}) = 21.6	6 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year r Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year	global warming eturn period r return period	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_1hr_i = Z1 >$ $Z2 = 1.92$ $M100_1hr = Z$	× M5_60min × (1 2 × M5_1hri = 41	+ p _{climate}) = 21.6 .4 mm	6 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year r Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity	global warming eturn period r return period	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_1hr_i = Z1 >$ $Z2 = 1.92$ $M100_1hr = Z$ $I_{max} = M100_11$	< M5_60min × (1 2 × M5_1hrì = 41 nr / D = 41.4 mm	+ p _{climate}) = 21.6 .4 mm vhr	6 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff	global warming eturn period r return period	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_1hr_i = Z1 > Z2 = 1.92$ $M100_1hr = Z$ $I_{max} = M100_1h$	× M5_60min × (1 2 × M5_1hri = 41 nr / D = 41.4 mm	+ p _{climate}) = 21.6 .4 mm v/hr	6 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area	global warming eturn period r return period	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_1hr_i = Z1 >$ $Z2 = 1.92$ $M100_1hr = Z$ $I_{max} = M100_11$ $A_{catch} = 297 m^2$	< M5_60min × (1 2 × M5_1hri = 41 nr / D = 41.4 mm	+ p _{climate}) = 21.6 .4 mm vhr	6 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm	global warming eturn period r return period eable	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_{-}1hr_{i} = Z1 >$ $Z2 = 1.92$ $M100_{-}1hr = Z$ $I_{max} = M100_{-}11$ $A_{catch} = 297 \text{ m}^{2}$ $p = 80 \%$	× M5_60min × (1 2 × M5_1hri = 41 nr / D = 41.4 mm	+ p _{climate}) = 21.6 .4 mm v/hr	5 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff	global warming eturn period r return period eable	$p_{climate} = 20\%$ $Z1 = 1.00$ $M5_{-}1hr_{i} = Z1 > 22 = 1.92$ $M100_{-}1hr = Z$ $I_{max} = M100_{-}11$ $A_{catch} = 297 m^{2}$ $p = 80\%$ $Q_{max} = A_{catch} \times$	< M5_60min × (1 2 × M5_1hri = 41 hr / D = 41.4 mm	+ p _{climate}) = 21.6 .4 mm v/hr	6 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite	global warming eturn period r return period eable eration of Manni	pclimate = 20 % Z1 = 1.00 M5_1hr_i = Z1 > Z2 = 1.92 M100_1hr = Z Imax = M100_11 A _{catch} = 297 m ² p = 80 % Q _{max} = A _{catch} × ng's formula	< M5_60min × (1 2 × M5_1hri = 41 nr / D = 41.4 mm	+ p _{climate}) = 21.6 .4 mm vhr	5 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	global warming eturn period r return period eable eration of Manni	pclimate = 20 % Z1 = 1.00 M5_1hri = Z1 > Z2 = 1.92 M100_1hr = Z Imax = M100_11 Acatch = 297 m ² p = 80 % Qmax = Acatch × ng's formula x = 60 mm	< M5_60min × (1 2 × M5_1hri = 4 1 hr / D = 41.4 mm	+ p _{climate}) = 21.6 .4 mm v/hr	6 mm		
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	global warming eturn period r return period eable eration of Manni <i>Depth</i>	pclimate = 20 % Z1 = 1.00 M5_1hri = Z1 > Z2 = 1.92 M100_1hr = Z Imax = M100_11 A _{catch} = 297 m ² p = 80 % Q _{max} = A _{catch} × ng's formula x = 60 mm	< M5_60min × (1 2 × M5_1hri = 41 nr / D = 41.4 mm p × I _{max} = 2.7 I/s <i>than or equal t</i>	+ p _{climate}) = 21.6 .4 mm /hr o 100 mm so fi	6 mm	ective (cl.	
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	global warming eturn period r return period eable eration of Manni <i>Depth</i>	pclimate = 20 % Z1 = 1.00 M5_1hri = Z1 > Z2 = 1.92 M100_1hr = Z Imax = M100_1 Acatch = 297 m ² p = 80 % Qmax = Acatch × mg's formula x = 60 mm of flow is less A = (w + x / s)	$ M5_60min \times (12 \times M5_1hr) = 41 $ $ 2 \times M5_1hr) = 41 $ hr / D = 41.4 mr $ p \times I_{max} = 2.7 l/s $ than or equal t $ \times x = 0.038 m^2$	+ p _{climate}) = 21.6 .4 mm \/hr o 100 mm so fi	6 mm	ective (cl.	
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow	global warming eturn period r return period eable eration of Manni <i>Depth</i>	pclimate = 20 % Z1 = 1.00 M5_1hri = Z1 > Z2 = 1.92 M100_1hr = Z Imax = M100_1 Acatch = 297 m ² p = 80 % Qmax = Acatch × ng's formula x = 60 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{3}$	$ M5_{60min \times (1)} \times (1) $ $ 2 \times M5_{1hr_{i}} = 41 $ $ 1 \to 1 $	+ p _{climate}) = 21.6 .4 mm /hr o 100 mm so fi 336 m	6 mm iltration is effe	ective (cl.	
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	global warming eturn period r return period eable eration of Manni <i>Depth</i>	pclimate = 20 % Z1 = 1.00 M5_1hr_i = Z1 > Z2 = 1.92 M100_1hr = Z Imax = M100_1 Acatch = 297 m ² p = 80 % Qmax = Acatch × mg's formula x = 60 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{2}$ R = A / P = 0.0	$ M5_60min \times (1) $ $2 \times M5_1hr_i = 41$ $r / D = 41.4 mm^2$ $p \times I_{max} = 2.7 l/s^2$ $than or equal t^2$ $x = 0.038 m^2$ $x^2 + (x / s)^2) = 0.4$ $M46 m^2$	+ p _{climate}) = 21.6 .4 mm \/hr o 100 mm so fi 336 m	6 mm	ective (cl.	
Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year m Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	global warming eturn period r return period eable eration of Manni <i>Depth</i>	pclimate = 20 % Z1 = 1.00 M5_1hri = Z1 > Z2 = 1.92 M100_1hr = Z Imax = M100_1h Acatch = 297 m ² p = 80 % Qmax = Acatch × ng's formula x = 60 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{2}$ R = A / P = 0.0 Qcheck = A × (R	$ M5_{60min \times (1)} \times (1) $ $ 2 \times M5_{1hr_{1}} = 41 $ $ 2 \times M5_{1hr_{1}} = 41 $ $ p \times I_{max} = 2.7 \text{ l/s} $ $ than or equal t $ $ x = 0.038 \text{ m}^{2} $ $ x^{2} + (x / s)^{2}) = 0.4 $ $ 46 \text{ m} $ $ / 1 \text{ m})^{2/3} \times S^{1/2} $	+ p _{climate}) = 21.6 .4 mm /hr o 100 mm so fi 336 m	6 mm Filtration is effe	ective (cl.	

X	Project Kilternan Vilage	9	Job Ref. 2104		
Roger Mullarkey & Associates Duncreevan Kilcock Co.Kildare	Section Swale 1		Sheet no./rev. 2		
	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by

Minimum width

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ Wtotal,min = 2 × (x + d_{\text{free}}) / s + w = \textbf{1.725} m
	Project Kilternan Vilage	е			Job Ref. 2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 2				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DESIG	<u>3N</u> tion C753 - Th	e SUDS Manua	I			
Quala dataila					Tedds calcula	tion version
Swale details		w - 0 450 m				
Longitudinal gradient of swale		S = 0.430 m				
Side slope gradient of swale		s - 0 330				
Manning number		n = 0.25				
Length of swale		L = 30 m				
			⊥			
			-83 50			
3		4 —450—►	T			
		1960				
	Cross	s section of sv	vale			
Design rainfall intensity						
Location of catchment area		Otner				
Storm duration		D = 1 nr				
Return period	wature pariad	Period = 100 y	1			
F year return paried rainfall of 60 mi		I = 0.271	9.0 mm			
5-year return period rainiair or 60 m	nules duration	$I = \Pi \Pi U O C O I$	0.0 11111			
Increase of rainfall intensity due to	Vichol worming	n. 20 0/				
Increase of rainfall intensity due to (global warming	$p_{\text{climate}} = 20\%$				
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure)	global warming	$p_{climate} = 20 \%$ Z1 = 1.00	(ME COmin x (1	()))	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref	global warming urn period	Pclimate = 20 % Z1 = 1.00 M5_1hr _i = Z1 >	< M5_60min × (1	+ p _{climate}) = 21.	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ret Factor Z2 (Wallingford procedure) Painfall for 1hr storm with 100 years	global warming urn period	Pclimate = 20% Z1 = 1.00 M5_1hr_i = Z1 > Z2 = 1.92 M100_1br_Z	< M5_60min × (1	+ p _{climate}) = 21.	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year	global warming urn period return period	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_1hr_i = Z1 \%$ $Z2 = 1.92$ $M100_1hr = Z$	< M5_60min × (1 2 × M5_1hri = 4 1	+ p _{climate}) = 21.	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity	global warming urn period return period	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_1hr_i = Z1 \%$ $Z2 = 1.92$ $M100_1hr = Z$ $I_{max} = M100_1$	< M5_60min × (1 2 × M5_1hr _i = 4 1 hr / D = 41.4 mm	+ p _{climate}) = 21. .4 mm v/hr	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff	global warming urn period return period	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_1hr_i = Z1 \%$ $Z2 = 1.92$ $M100_1hr = Z$ $I_{max} = M100_1$	× M5_60min × (1 2 × M5_1hrì = 41 hr / D = 41.4 mr	+ p _{climate}) = 21. . 4 mm n/hr	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area	global warming urn period return period	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_1hr_i = Z1 \%$ $Z2 = 1.92$ $M100_1hr = Z$ $I_{max} = M100_1$ $A_{catch} = 540 \text{ mm}$	< M5_60min × (1 2 × M5_1hri = 4 1 hr / D = 41.4 mm	+ p _{climate}) = 21. .4 mm v/hr	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment	global warming aum period return period	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_{1}hr_{i} = Z1 \Rightarrow$ $Z2 = 1.92$ $M100_{1}hr = Z$ $I_{max} = M100_{1}$ $A_{catch} = 540 \text{ m}^{2}$ $p = 80 \%$	× M5_60min × (1 2 × M5_1hri = 41 hr / D = 41.4 mm	+ p _{climate}) = 21. . 4 mm 1/hr	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff	global warming :urn period return period able	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_{1}hr_{i} = Z1 \Rightarrow$ $Z2 = 1.92$ $M100_{1}hr = Z$ $I_{max} = M100_{1}$ $A_{catch} = 540 \text{ m}^{2}$ $p = 80 \%$ $Q_{max} = A_{catch} \times$	< M5_60min × (1 2 × M5_1hri = 4 1 hr / D = 41.4 mm 2 p × I _{max} = 5.0 I/s	+ p _{climate}) = 21. 1.4 mm 1/hr	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermea Maximum surface water runoff Calculate depth of flow using iter	global warming :urn period return period able ation of Manni	Pclimate = 20 % Z1 = 1.00 M5_1hri = Z1 $>$ Z2 = 1.92 M100_1hr = Z Imax = M100_1 Acatch = 540 m ² p = 80 % Qmax = Acatch \times ing's formula	\times M5_60min \times (1 2 \times M5_1hr _i = 41 hr / D = 41.4 mm e p \times I _{max} = 5.0 I/s	+ p _{climate}) = 21. .4 mm n/hr	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow	global warming surn period return period able ation of Manni	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_{1}hr_{i} = Z1 \Rightarrow$ $Z2 = 1.92$ $M100_{1}hr = Z$ $I_{max} = M100_{1}$ $A_{catch} = 540 \text{ m}^{2}$ $p = 80 \%$ $Q_{max} = A_{catch} \times$ $mg's formula$ $x = 83 \text{ mm}$	< M5_60min × (1 2 × M5_1hri = 41 hr / D = 41.4 mm	+ p _{climate}) = 21. 4.4 mm 1/hr	6 mm	
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermea Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow	global warming aum period return period able able ation of Manni Depth	Pclimate = 20 % Z1 = 1.00 M5_1hri = Z1 $>$ Z2 = 1.92 M100_1hr = Z Imax = M100_1 Acatch = 540 m ² p = 80 % Qmax = Acatch \times ing's formula x = 83 mm of flow is less	< M5_60min × (1 2 × M5_1hri = 41 hr / D = 41.4 mm p × I _{max} = 5.0 I/s <i>than or equal t</i>	+ p _{climate}) = 21. . 4 mm 1/hr 100 mm so f	6 mm	ective (cl.
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow	global warming surn period return period able ation of Manni <i>Depth</i>	$p_{climate} = 20 \%$ $Z1 = 1.00$ $M5_{1}hr_{i} = Z1 \Rightarrow$ $Z2 = 1.92$ $M100_{1}hr = Z$ $I_{max} = M100_{1}$ $A_{catch} = 540 \text{ m}^{2}$ $p = 80 \%$ $Q_{max} = A_{catch} \times$ $mg's formula$ $x = 83 \text{ mm}$ $a of flow is less$ $A = (w + x / s)$	< M5_60min × (1 2 × M5_1hri = 41 hr / D = 41.4 mr 2 $p × I_{max} = 5.0 l/s$ <i>than or equal t</i> × x = 0.058 m ²	+ p _{climate}) = 21. 4. 4 mm 1/hr 70 <i>100 mm</i> so f	6 mm	ective (cl.
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow Area of flow Perimeter of flow	global warming sum period return period able ation of Manni <i>Depth</i>	Pclimate = 20 % Z1 = 1.00 M5_1hr_i = Z1 × Z2 = 1.92 M100_1hr = Z Imax = M100_1 Acatch = 540 m ² p = 80 % Qmax = Acatch × mg's formula x = 83 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2)}$	< M5_60min × (1 2 × M5_1hr _i = 41 hr / D = 41.4 mm p × I _{max} = 5.0 l/s than or equal t × x = 0.058 m ² $x^{2} + (x / s)^{2}) = 0.3$	+ p _{climate}) = 21. . .4 mm 1/hr to 100 mm so f 980 m	6 mm	ective (cl.
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	global warming surn period return period able ation of Manni <i>Depth</i>	Pclimate = 20 % Z1 = 1.00 M5_1hr_i = Z1 × Z2 = 1.92 M100_1hr = Z Imax = M100_1 Acatch = 540 m ² p = 80 % Qmax = Acatch × ing's formula x = 83 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(120)}$	\times M5_60min \times (1 2 \times M5_1hr = 41 hr / D = 41.4 mr p \times I _{max} = 5.0 l/s than or equal t \times x = 0.058 m ² x ² + (x / s) ²) = 0.9	+ p _{climate}) = 21. .4 mm n/hr 7 o <i>100 mm</i> so f	6 mm	ective (cl.
Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 1hr storm with 5 year ref Factor Z2 (Wallingford procedure) Rainfall for 1hr storm with 100 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	global warming surn period return period able ation of Manni <i>Depth</i>	Pclimate = 20 % Z1 = 1.00 M5_1hr_i = Z1 × Z2 = 1.92 M100_1hr = Z Imax = M100_1 Acatch = 540 m ² p = 80 % Qmax = Acatch × mg's formula x = 83 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2)}$ R = A / P = 0.0 Qcheck = A × (R	< M5_60min × (1 2 × M5_1hr _i = 41 hr / D = 41.4 mm p × I _{max} = 5.0 l/s than or equal to × x = 0.058 m ² x ² + (x / s) ²) = 0.9 559 m ./ 1 m) ^{2/3} × S ^{1/2} ×	+ p _{climate}) = 21. .4 mm hr hr 50 100 mm so f 980 m < 1 m/s / n = 5.0	6 mm <i>iltration is effe</i>	ective (cl.

X	Project Kilternan Vilage	e	Job Ref. 2104			
Roger Mullarkey & Associates Duncreevan	Section Swale 2		Sheet no./rev. 2			
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ Wtotal,min = 2 × (x + d_{\text{free}}) / s + w = \textbf{1.862} \text{ m}

	Project Kilternan Vilage	Э			Job Ref. 2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 3				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DESI	GN					
In accordance with CIRIA publica	tion C753 - The	e SUDS Manua	ll i		Tedds calcula	ation version
Swale details						
Width of swale base		w = 0.450 m				
Longitudinal gradient of swale		S = 0.010				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.25				
Length of swale		L= 11 m	1			
			-35 50▲			
1						
3						
		⊢450—_▶				
•		—1570——				
	Cross	s section of sw	vale			
Design rainfall intensity		Other				
Location of Catchment area						
Storm duration		$D = 1 \Pi r$				
Potio 60 min to 2 dov rainfall of 5 vr	roturn pariod	r = 0.271				
5-year return period rainfall of 60 m	inutes duration	M5 = 0.271	8 0 mm			
Increase of rainfall intensity due to		noimete – 20 %	0.0 11111			
Factor 71 (Wallingford procedure)	jiobai wairiing	71 – 1 00				
Rainfall for 1br storm with 5 year ret	urn period	$M5 \ 1 \text{ hr} = 71^{\circ}$	√M5 60min√	(1 + nolimata) -	21 6 mm	
Factor 72 (Wallingford procedure)	un pened	72 – 0 84		(1 pointale) -	21.0	
Rainfall for the storm with 2 year ret	urn period	$M_2 = 0.04$	∠M5.1br⊨ 18	1 mm		
Design rainfall intensity	umpenou	$I_{max} = M2$ 1hr	/ D = 18.1 mm	/hr		
Maximum surface water runoff		_				
Catchment area		A _{catch} = 140 m	2			
Percentage of area that is imperme	able	p = 95 %				
Maximum surface water runoff		$Q_{max} = A_{catch} \times$	p × I _{max} = 0.7 I	/s		
Coloulate double of flow uping iter	ation of Manni	ng's formula				
Calculate depth of flow using iter		x = 35 mm				
Minimum depth of flow		of flow is less	than or equa	l to 100 mm s	so filtration is effe	ective (cl.
Minimum depth of flow	Depth	01 11010 13 1033				
Area of flow	Depth	A = (w + x / s)	× x = 0.019 m ²	2		
Area of flow Perimeter of flow	Depth	$A = (w + x / s)$ $P = w + 2 \times \sqrt{(}$	x = 0.019 m ² $x^{2} + (x / s)^{2} = 0$	2 0.673 m		
Area of flow Perimeter of flow Hydraulic radius	Depth	$A = (w + x / s)$ $P = w + 2 \times \sqrt{(R = A / P = 0.6)}$	× x = 0.019 m ² x ² + (x / s) ²) = 0 029 m	2 0.673 m		
Area of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	Depth	$A = (w + x / s)$ $P = w + 2 \times \sqrt{(R = A / P = 0.0)}$ $Q_{check} = A \times (F)$	$x = 0.019 \text{ m}^{2}$ $x^{2} + (x / s)^{2} = 0$ $x^{2} = 0$ x^{2	² 0.673 m ² ×1 m/s / n =	0.7 l/s	

X	Project Kilternan Vilage	9	Job Ref. 2104			
Roger Mullarkey & Associates Duncreevan	Section Swale 3		Sheet no./rev. 2			
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ $w_{\text{total,min}} = 2 \times (x + d_{\text{free}}) / s + w = \textbf{1.570} \text{ m}$

	Project Kilternan Vilag	е			Job Ref. 2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 4				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DE	SIGN cation C753 - Th	e SUDS Manua	1			
					Tedds calcula	ation version
Swale details						
Width of swale base		w = 0.450 m				
Longitudinal gradient of swale		S = 0.008				
Side slope gradient of swale		s = 0.330				
Ivianning number		n = 0.25				
Length of swale		L = 35 M				
			-89 50 ▲			
1						
			T			
		4 —450— ▶				
		—1896——				
	Creat	a action of au		. [
	01055					
Design rainfall intensity						
Location of catchment area		Other				
Storm duration		D = 30 min				
Return period		Period = 2 yr				
Ratio 60 min to 2 day rainfall of 5	yr return period	r = 0.271				
5-year return period rainfall of 60	minutes duration	M5_60min = 1	8.0 mm			
Increase of rainfall intensity due to	o global warming	Pclimate = 20 %				
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure	o global warming)	Pclimate = 20 % Z1 = 0.76				
Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye	o global warming) ar return period	$p_{climate} = 20 \%$ Z1 = 0.76 M5_30min _i = Z	21 × M5_60min >	x (1 + p _{climate}) = 1	1 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure	o global warming) ar return period)	$p_{climate} = 20 \%$ Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83	21 × M5_60min >	c (1 + p _{climate}) = 1	1 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye	o global warming) ar return period) ar return period	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = Z$ $Z2 = 0.83$ $M2_{3}0min = Z$	21 × M5_60min > 2 × M5_30min; =	< (1 + p _{climate}) = 1 = 13.7 mm	1 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity	o global warming) ar return period) ar return period	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = Z$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0mi$	21 × M5_60min > 2 × M5_30min; = nin / D = 27.4 mn	x (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff	o global warming) ar return period) ar return period	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_30min_i = Z$ $Z2 = 0.83$ $M2_30min = Z$ $I_{max} = M2_30mi$	21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	l 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area	o global warming) ar return period) ar return period	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = Z$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0m$ $A_{catch} = 493 m^{2}$	21 × M5_60min × 2 × M5_30min; = nin / D = 27.4 mn	x (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm	o global warming) ar return period) ar return period neable	$p_{climate} = 20\%$ $Z1 = 0.76$ $M5_{3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0mi$ $A_{catch} = 493mi$ $p = 95\%$	21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn	≪ (1 + p _{climate}) = 1 = 13.7 mm n⁄hr	l 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff	o global warming) ar return period) ar return period neable	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0m$ $A_{catch} = 493 m$ $p = 95 \%$ $Q_{max} = A_{catch} \times$	21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn 2 p × I _{max} = 3.6 I/s	< (1 + p _{climate}) = 1 = 13.7 mm n∕hr	1 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it	o global warming) ar return period) ar return period neable eration of Manni	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0m$ $A_{catch} = 493 m^{2}$ $p = 95 \%$ $Q_{max} = A_{catch} \times$ $ng's formula$	21 × M5_60min × 2 × M5_30min; = nin / D = 27.4 mn 2 p × I _{max} = 3.6 I/s	x (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	o global warming) ar return period) ar return period neable eration of Manni	Pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min = 2 Imax = M2_30min = 2 Max = M2_30min	$21 \times M5_{60} = 0$ $2 \times M5_{30} = 0$ $\sin / D = 27.4 \text{ mm}$ $p \times I_{max} = 3.6 \text{ l/s}$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	o global warming) ar return period) ar return period neable eration of Manni <i>Depth</i>	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0m$ $A_{catch} = 493 m^{2}$ $p = 95 \%$ $Q_{max} = A_{catch} \times$ $mg's formula$ $x = 89 mm$ $a of flow is less$	$21 \times M5_{60} \text{min} > 2 \times M5_{30} \text{min} = 10 \text{min} / D = 27.4 \text{mm}$ $p \times l_{max} = 3.6 \text{ l/s}$ than or equal t	< (1 + p _{climate}) = 1 = 13.7 mm n∕hr o <i>100 mm</i> so fi	l 6.4 mm	ective (cl.
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	o global warming) ar return period) ar return period neable eration of Manni <i>Depth</i>	Pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 493 m ² p = 95 % Qmax = Acatch × ing's formula x = 89 mm of flow is less A = (w + x / s)	$21 \times M5_{60} \text{min} > 2 \times M5_{30} \text{min}_{i} = 100 mi$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi	il 6.4 mm	ective (cl.
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impern Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow	o global warming) ear return period) ar return period neable eration of Manni <i>Depth</i>	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0m$ $A_{catch} = 493 m^{2}$ $p = 95 \%$ $Q_{max} = A_{catch} \times$ $mg's formula$ $x = 89 mm$ $fof flow is less$ $A = (w + x / s)$ $P = w + 2 \times \sqrt{(2 - 5)}$	$21 \times M5_{60} = 60 = 10^{10} \times M5_{30} = 10^{10} \times M5_{30} = 10^{10} \times M5_{30} = 10^{10} \times M5_{10} = 10^{$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi 0 15 m	l 6.4 mm	ective (cl.
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	o global warming) ar return period) ar return period neable eration of Manni <i>Depth</i>	Pciimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 493 min p = 95 % Qmax = Acatch × mg's formula x = 89 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2)}$ R = A / P = 0.0	$21 \times M5_{60} \text{min} >$ $2 \times M5_{30} \text{min}_{i} =$ $\sin / D = 27.4 \text{ mm}_{2}$ $p \times I_{max} = 3.6 \text{ l/s}$ <i>than or equal t</i> $x = 0.064 \text{ m}^{2}$ $x^{2} + (x / s)^{2}) = 1.0$ 363 m_{2}	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi 0 15 m	6.4 mm	ective (cl.
Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperin Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	o global warming) ar return period) ar return period neable eration of Manni <i>Depth</i>	pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 493 m ² p = 95 % Qmax = Acatch × ing's formula x = 89 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2)}$ R = A / P = 0.0 Qcheck = A × (R	$21 \times M5_{60} = 60 = 10^{12} \times M5_{30} = 10^{12} \times M5_{30} = 10^{12} \times 10^{$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi 0 15 m : 1 m/s / n = 3.6	I 6.4 mm	ective (cl.

X	Project Kilternan Vilage	e	Job Ref. 2104			
Roger Mullarkey & Associates Duncreevan	Section Swale 4		Sheet no./rev. 2			
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ Wtotal,min = 2 × (x + d_{\text{free}}) / s + w = \textbf{1.896} m

	Project Kilternan Vilage	е			Job Ref. 2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 5				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
	1			1		
SWALE AND FILTER STRIP DES	<u>IGN</u> ation C753 - Th	a SUDS Manua	1			
					Tedds calcula	tion version
Swale details						
Width of swale base		w = 0.450 m				
Longitudinal gradient of swale		S = 0.020				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.25				
Length of swale		L = 26 m				
			-57 150			
1						
3	I	450 5	↑ '			
		-450▶				
—		—1703——		—		
	Cross	section of sw	مادر	,		
	01000					
Design rainfall intensity						
Location of catchment area		Other				
Storm duration		D = 30 min				
Return period						
Retuin penou		Period = 2 yr				
Ratio 60 min to 2 day rainfall of 5 y	r return period	Period = 2 yr r = 0.271				
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 m	rr return period ninutes duration	Period = 2 yr r = 0.271 M5_60min = 1	8.0 mm			
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to	rr return period ninutes duration global warming	Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 %	8.0 mm			
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure)	rr return period ninutes duration global warming	Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76	8.0 mm			
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea	rr return period ninutes duration global warming r return period	Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20% Z1 = 0.76 M5_30min _i = Z	8.0 mm 21 × M5_60min >	< (1 + p _{climate}) = 1	1 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure)	rr return period ninutes duration global warming r return period	Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83	8.0 mm 21 × M5_60min >	< (1 + p _{climate}) = 1	1 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea	rr return period ninutes duration global warming r return period r return period	Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20% Z1 = 0.76 M5_30min = Z Z2 = 0.83 M2_30min = Z	8.0 mm 21 × M5_60min > 2 × M5_30min₁ =	< (1 + p _{climate}) = 1 = 13.7 mm	1 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity	rr return period ninutes duration global warming r return period r return period	Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mm	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff	rr return period ninutes duration global warming r return period r return period	Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20% Z1 = 0.76 M5_30min = Z Z2 = 0.83 M2_30min = Z Imax = M2_30min	8.0 mm 21 × M5_60min > 2 × M5_30min; = nin / D = 27.4 mn	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	l 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area	rr return period ninutes duration global warming r return period r return period	Period = 2 yr r = 0.271 $M5_{60}min = 1$ pclimate = 20 % Z1 = 0.76 $M5_{30}min_i = 2$ Z2 = 0.83 $M2_{30}min = Z$ $I_{max} = M2_{30}min$ $A_{catch} = 338 min$	8.0 mm 21 × M5_60min > 22 × M5_30min _i = nin / D = 27.4 mn	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme	rr return period ninutes duration global warming r return period r return period	Period = 2 yr r = 0.271 $M5_{-60}min = 1$ $p_{climate} = 20 \%$ Z1 = 0.76 $M5_{-30}min_i = 2$ Z2 = 0.83 $M2_{-30}min = Z$ $I_{max} = M2_{-30}min$ $A_{catch} = 338 min$ p = 95 %	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermentation Maximum surface water runoff	rr return period ninutes duration global warming r return period r return period	Period = 2 yr r = 0.271 $M5_{6}0min = 1$ $p_{climate} = 20 \%$ Z1 = 0.76 $M5_{3}0min_i = 2$ Z2 = 0.83 $M2_{3}0min = Z$ $l_{max} = M2_{3}0m$ $A_{catch} = 338 m^2$ p = 95 % $Q_{max} = A_{catch} \times$	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn 2 $p × I_{max} = 2.4 I/s$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite	rr return period hinutes duration global warming r return period r return period eable ration of Manni	Period = 2 yr r = 0.271 $M5_{-60}min = 1$ $p_{climate} = 20 \%$ Z1 = 0.76 $M5_{-3}0min_i = 2$ Z2 = 0.83 $M2_{-3}0min = Z$ $I_{max} = M2_{-3}0m$ $A_{catch} = 338 m^2$ p = 95 % $Q_{max} = A_{catch} \times$ ng's formula	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mm 2 $p × I_{max} = 2.4 I/s$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	l 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	rr return period hinutes duration global warming r return period r return period eable ration of Manni	Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = Z Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 338 m ² p = 95 % Qmax = Acatch × ng's formula x = 57 mm	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn 2 $p × I_{max} = 2.4 I/s$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	l 6.4 mm	
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	rr return period hinutes duration global warming r return period r return period eable ration of Manni Depth	Period = 2 yr r = 0.271 $M5_{-}60min = 1$ $p_{climate} = 20 \%$ Z1 = 0.76 $M5_{-}30min_i = 2$ Z2 = 0.83 $M2_{-}30min = Z$ $I_{max} = M2_{-}30m$ $A_{catch} = 338 m^2$ p = 95 % $Q_{max} = A_{catch} \times$ mg's formula x = 57 mm	8.0 mm $21 \times M5_60min > 2 \times M5_30min_i = 1000min = 1000min_i = 1$	< (1 + p _{climate}) = 1 = 13.7 mm n∕hr o 100 mm so fi	6.4 mm	ective (cl.
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	rr return period hinutes duration global warming r return period r return period eable ration of Manni <i>Depth</i>	Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _l = Z Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 338 m ² p = 95 % Qmax = Acatch × ng's formula x = 57 mm of flow is less A = (w + x / s)	8.0 mm 21 × M5_60min > 2 × M5_30min; = nin / D = 27.4 mn 2 p × Imax = 2.4 I/s than or equal t × x = 0.035 m ²	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi	6.4 mm	ective (cl.
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow	rr return period hinutes duration global warming r return period r return period eable ration of Manni <i>Depth</i>	Period = 2 yr r = 0.271 $M5_{-}60min = 1$ pclimate = 20 % Z1 = 0.76 $M5_{-}30min_i = 2$ Z2 = 0.83 $M2_{-}30min = Z$ $I_{max} = M2_{-}30m$ Acatch = 338 m ² p = 95 % Qmax = Acatch × ng's formula x = 57 mm of flow is less A = (w + x / s) $P = w + 2 × \sqrt{2}$	8.0 mm $(1 \times M5_60min > 2 \times M5_30min_i = 10 min / D = 27.4 mm)$ $p \times I_{max} = 2.4 l/s$ <i>than or equal to</i> $(x^2 + (x / s)^2) = 0.2$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi 312 m	6.4 mm	ective (cl.
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	rr return period hinutes duration global warming r return period r return period eable ration of Manni Depth	Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 338 m ² p = 95 % Qmax = Acatch × ng's formula x = 57 mm of flow is less A = (w + x / s) $P = w + 2 × \sqrt{(x)}$ R = A / P = 0	8.0 mm 21 × M5_60min > 2 × M5_30min _i = $2 × M5_30min_i =$ $2 × M5_30min_i =$ $2 × M5_30min_i =$ $2 × M5_30min_i =$ $2 × M5_30min_i =$ $4 × M5_30min_i =$ $2 × M5_30min_i =$ $4 × M5_30min_i =$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o 100 mm so fi 312 m	6.4 mm	ective (cl.
Ratio 60 min to 2 day rainfall of 5 y 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius Check flow using Mapping equation	rr return period hinutes duration global warming r return period r return period eable ration of Manni <i>Depth</i>	Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 338 m ² p = 95 % Qmax = Acatch × ng's formula x = 57 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2)}$ R = A / P = 0.0 Qebeck = A × (R	8.0 mm 21 × M5_60min > 2 × M5_30min; = $2 \times M5_30min; =$ $2 \times M5_30min; =$ $2 \times M5_30min; =$ $2 \times M5_60min; =$ $2 \times M5_$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi 312 m	6.4 mm	ective (cl.

X	Project Kilternan Vilage	9	Job Ref. 2104			
Roger Mullarkey & Associates Duncreevan	Section Swale 5				Sheet no./rev. 2	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ Wtotal,min = 2 × (x + d_{\text{free}}) / s + w = \textbf{1.703} \text{ m}

	Project Kilternan Vilag	е			Job Ref. 2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 6				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DES	IGN					
In accordance with CIRIA public	ation C753 - The	e SUDS Manua	I			tionvorsion
Swale details					Tedas calcula	luon version
Width of swale base		w = 0.450 m				
Longitudinal gradient of swale		S = 0.020				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.25				
Length of swale		L= 11 m				
			± 15			
			120			
1	_					
5			Т			
4		1631				
	0					
	Cross	s section of sw	ale			
Design rainfall intensity						
Location of catchment area		Other				
Storm duration		D = 30 min				
Return period		D = 30 min				
Ratio 60 min to 2 day rainfall of 5 y	r roturn pariod	r = 0.271				
5-year return period rainfall of 60 n		1 = 0.271 M5 60min = 1	8 0 mm			
Increase of reinfoll intensity due to		$ND_0UIIII = I$	0.0			
Increase of fairlian intensity due to	alobal warming	n				
Easter 71 (Mallingford procedure)	global warming	Pclimate = 20 %				
Factor Z1 (Wallingford procedure)	global warming	$p_{climate} = 20 \%$ Z1 = 0.76	1 × ME 60min x		16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea	global warming r return period	$p_{climate} = 20 \%$ Z1 = 0.76 M5_30min _i = 2	21 × M5_60min >	c (1 + p _{climate}) = 1	16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure)	global warming	pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83	21 × M5_60min >	(1 + p _{climate}) = 1	16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea	global warming Ir return period Ir return period	$p_{climate} = 20 \%$ Z1 = 0.76 M5_30min _i = Z Z2 = 0.83 M2_30min = Z	21 × M5_60min > 2 × M5_30min₁ =	< (1 + p _{climate}) = 1 = 13.7 mm	16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity	global warming Ir return period Ir return period	pclimate = 20 % Z1 = 0.76 M5_30min _i = Z Z2 = 0.83 M2_30min = Z I _{max} = M2_30m	21 × M5_60min > 2 × M5_30min; = nin / D = 27.4 mn	x (1 + p _{climate}) = 1 = 13.7 mm n/hr	16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff	global warming Ir return period Ir return period	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{3}0min = 2$ $I_{max} = M2_{3}0mi$	°.1 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn	* (1 + p _{climate}) = 1 = 13.7 mm n/hr	16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area	global warming Ir return period Ir return period	pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 220 m ²	21 × M5_60min > 2 × M5_30min; = nin / D = 27.4 mn	≪ (1 + p _{climate}) = 1 = 13.7 mm n⁄hr	16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed	global warming ar return period ar return period	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_i = 2$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0mi$ $A_{catch} = 220 mi$ $p = 95 \%$	21 × M5_60min > 2 × M5_30min _i = in / D = 27.4 mn	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff	global warming ar return period ar return period	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0mi$ $A_{catch} = 220 mi$ $p = 95 \%$ $Q_{max} = A_{catch} \times$	21 × M5_60min > 2 × M5_30min; = iin / D = 27.4 mn : p × I _{max} = 1.6 I/s	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite	global warming Ir return period Ir return period Pable	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{-3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{-3}0min = Z$ $I_{max} = M2_{-3}0m$ $A_{catch} = 220 m^{2}$ $p = 95 \%$ $Q_{max} = A_{catch} \times$ ng's formula	²1 × M5_60min > 2 × M5_30mini = nin / D = 27.4 mn e p × I _{max} = 1.6 I/s	≤ (1 + p _{climate}) = 1 = 13.7 mm n⁄hr	16.4 mm	
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	global warming ar return period ar return period eable ration of Manni	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0mi$ $A_{catch} = 220 mi$ $p = 95 \%$ $Q_{max} = A_{catch} \times$ $ng's formula$ $x = 45 mm$	$21 \times M5_{60} \text{min} > 2 \times M5_{30} \text{min} = 1$ in / D = 27.4 mn p × I _{max} = 1.6 I/s	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	16.4 mm	<i>u</i> i /
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	global warming ar return period ar return period eable ration of Manni <i>Depth</i>	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{-3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{-3}0min = Z$ $I_{max} = M2_{-3}0m$ $A_{catch} = 220 m^{2}$ $p = 95 \%$ $Q_{max} = A_{catch} \times$ $mg's formula$ $x = 45 mm$ $r of flow is less$	$2^{1} \times M5_{60} \text{min} > 2 \times M5_{30} \text{min} = 10^{10} \text$	 (1 + p_{climate}) = 1 = 13.7 mm n/hr o 100 mm so fi 	16.4 mm	ective (cl.
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	global warming ar return period ar return period eable ration of Manni <i>Depth</i>	$p_{climate} = 20 \%$ $Z1 = 0.76$ $M5_{3}0min_{i} = 2$ $Z2 = 0.83$ $M2_{3}0min = Z$ $I_{max} = M2_{3}0mi$ $A_{catch} = 220 mi$ $p = 95 \%$ $Q_{max} = A_{catch} \times$ $mg's formula$ $x = 45 mm$ of flow is less A = (w + x / s)	$21 \times M5_{60} \text{min} > 2 \times M5_{30} \text{min} = 1$ in / D = 27.4 mm p × I _{max} = 1.6 I/s than or equal t x x = 0.026 m ²	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi	16.4 mm	ective (cl.
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow	global warming ar return period ar return period eable ration of Manni <i>Depth</i>	pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 220 min p = 95 % Qmax = Acatch × ng's formula x = 45 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(x + 1)^2}$	$2^{1} \times M5_{60} \text{min} > 2 \times M5_{30} \text{min}_{i} = 100 \text$	c (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi 7 36 m	16.4 mm	ective (cl.
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	global warming Ir return period Ir return period Pable Fration of Manni Depth	pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 220 m ² p = 95 % Qmax = Acatch × ng's formula x = 45 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(x - 1)^2}$ R = A / P = 0.0	$21 \times M5_{60} \text{min} > 2 \times M5_{30} \text{min}_{1} = 2 \times M5_{30} \text{min}_{1} = 10 \text{min} / D = 27.4 \text{mm}$ $p \times I_{max} = 1.6 \text{ l/s}$ than or equal t $x = 0.026 \text{ m}^{2}$ $x^{2} + (x / s)^{2}) = 0.7$ $x^{36} \text{m}$	c (1 + p _{climate}) = 1 = 13.7 mm n/hr o 100 mm so f i 736 m	16.4 mm	ective (cl.
Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermed Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	global warming ar return period ar return period eable ration of Manni <i>Depth</i>	pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min = Z Imax = M2_30min = Z Imax = M2_30min = Z Max = Acatch × Max = 45 mm Max = M2 + Z × V(X) R = A / P = 0.0 Qcheck = A × (R)	$21 \times M5_{60} \text{min} > 2 \times M5_{30} \text{min}_{i} = 2 \times M5_{30} \text{min}_{i} = 100 \text{min}_{i} = $	< (1 + p _{climate}) = 1 = 13.7 mm n/hr o <i>100 mm</i> so fi 7 36 m : 1 m/s / n = 1.6	16.4 mm <i>iltration is effe</i>	ective (cl.

X	Project Kilternan Vilage	e	Job Ref. 2104			
Roger Mullarkey & Associates Duncreevan	Section Swale 6		Sheet no./rev. 2			
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ Wtotal,min = 2 × (x + d_{\text{free}}) / s + w = \textbf{1.631} \text{ m}

×	ProjectJob Ref.Kilternan Vilage2104					
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 7	-			1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DE	<u>SIGN</u>					
In accordance with CIRIA public	cation C753 - The	e SUDS Manua	I		Tedds calcula	ation version
Swale details						
Width of swale base		w = 0.450 m				
Longitudinal gradient of swale		S = 0.008				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.25				
Length of swale		L = 33 m	_			
			-60 50			
1						
3	1		≜ '			
		450—▶				
—		—1726——				
I	Cross	section of sw	مادر	I		
	01000					
Design rainfall intensity						
Location of catchment area		Other				
Storm duration		D = 30 min				
Return period		Period = 2 yr				
Ratio 60 min to 2 day rainfall of 5	yr return period	r = 0.271				
5-year return period rainfall of 60	minutes duration	$M5_60min = 1$	8.0 mm			
Increase of rainfall intensity due to	o global warming	$p_{climate} = 20\%$				
Factor Z1 (Wallingford procedure))	21 = 0.76				
Rainfall for 30min storm with 5 ye	ar return period	$M5_30min_i = 2$	$1 \times 105_60 \text{min} >$	$(1 + p_{climate}) =$	16.4 mm	
Factor Z2 (Wallingford procedure))	22 = 0.83		40 7		
Rainfall for 30min storm with 2 ye	ar return period	$IVI2_30min = 2$	2 × 11/15_30mini =	= 13.7 mm		
Design rainfall intensity		$I_{max} = IV12_30m$	10 / D = 27.4 mm	n/ nr		
Maximum surface water runoff			,			
Catchment area		$A_{\text{catch}} = 240 \text{ m}^2$				
B () () () () () () () () () (neable	p = 95 %				
Percentage of area that is imperm		<u> </u>	n v 1 7 1/n			
Percentage of area that is imperm Maximum surface water runoff		$Q_{max} = A_{catch} \times$	$p \times I_{max} = 1.7 1/S$			
Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it	eration of Manni	$Q_{max} = A_{catch} \times$ ng's formula	$p \times I_{max} = 1.7 1/S$			
Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using its Minimum depth of flow	eration of Manni	$Q_{max} = A_{catch} \times$ ng's formula x = 60 mm	ρ×1 _{max} = 1.7 //S	100		,
Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	eration of Manni Depth	$Q_{max} = A_{catch} \times$ ng's formula x = 60 mm of flow is less	$p \times I_{max} = 1.7 //S$ than or equal t	o 100 mm so t	iltration is effe	ective (cl.
Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow	eration of Manni Depth	$Q_{max} = A_{catch} \times$ ng's formula x = 60 mm of flow is less A = (w + x / s)	$p \times I_{max} = 1.7 l/s$ than or equal t $\times x = 0.038 m^2$	o 100 mm so f	iltration is effe	ective (cl.
Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow	eration of Manni Depth	$Q_{max} = A_{catch} \times$ ng's formula x = 60 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(x + y)}$	$p \times I_{max} = 1.7 \text{ //s}$ than or equal t $\times x = 0.038 \text{ m}^2$ $\kappa^2 + (x / s)^2) = 0.8$	o 100 mm so 1 336 m	iltration is effe	ective (cl.
Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	eration of Manni Depth	$Q_{max} = A_{catch} \times$ ng's formula $x = 60 \text{ mm}$ of flow is less $A = (w + x / s)$ $P = w + 2 \times \sqrt{(x + z - c_{max})}$ $R = A / P = 0.0$	$p \times I_{max} = 1.7 //S$ <i>than or equal t</i> $\times x = 0.038 m^2$ $x^2 + (x / s)^2) = 0.3$ $x^4 + (x / s)^2 = 0.3$	o 100 mm so f 836 m	iltration is effe	ective (cl.
Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	eration of Manni Depth	$Q_{max} = A_{catch} \times$ ng's formula x = 60 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(x + x - x)}$ R = A / P = 0.0 Q_{check} = A × (R)	$p \times I_{max} = 1.7 //S$ than or equal t $\times x = 0.038 m^2$ $x^2 + (x / s)^2) = 0.8$ $x^4 + (x / s)^2 = 0.8$	o 100 mm so f 336 m <1 m/s / n = 1.8	filtration is effe	ective (cl.

X	Project Kilternan Vilage	9	Job Ref. 2104			
Roger Mullarkey & Associates Duncreevan	Section Swale 7				Sheet no./rev. 2	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ Wtotal,min = 2 × (x + d_{\text{free}}) / s + w = \textbf{1.726} \text{ m}

	Project Kilternan Vilag	e			2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 8				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DE	SIGN					
In accordance with CIRIA publi	cation C753 - Th	e SUDS Manua	I		Tedds calcula	ation version
Swale details						
Width of swale base		w = 0.450 m				
Longitudinal gradient of swale		S = 0.016				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.25				
Length of swale		L = 19 m				
			150			
1						
3		450				
▲		—1583——				
				I		
I	Cross	s section of sv	vale	Ι		
I	Cross	s section of sv	vale	I		
Design rainfall intensity	Cross	s section of sv	vale	I		
Design rainfall intensity Location of catchment area	Cross	s section of sv Other	vale	I		
Design rainfall intensity Location of catchment area Storm duration	Cross	s section of sv Other D = 30 min	vale	Ţ		
Design rainfall intensity Location of catchment area Storm duration Return period	Cross	S section of sv Other D = 30 min Period = 2 yr	vale	T		
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5	Cross yr return period	Other D = 30 min Period = 2 yr r = 0.271	vale	T		
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60	Cross yr return period minutes duration	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1	vale 8.0 mm	T		
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t	Cross yr return period minutes duration o global warming	Other D = 30 min Period = 2 yr r = 0.271 $M5_60\text{min} = 1$ $p_{climate} = 20 \%$	vale 8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure	Cross yr return period minutes duration o global warming	Other D = 30 min Period = 2 yr r = 0.271 $M5_60\text{min} = 1$ $p_{climate} = 20 \%$ Z1 = 0.76	vale 8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye	Cross yr return period minutes duration o global warming) ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = 2	vale 8.0 mm Z1 × M5_60min >	< (1 + p _{climate}) =	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure	Cross yr return period minutes duration o global warming) ar return period	Other $D = 30$ min Period = 2 yr $r = 0.271$ M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83	vale 8.0 mm Z1 × M5_60min >	< (1 + pclimate) =	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye	Cross yr return period minutes duration o global warming o) ear return period	Other $D = 30$ min Period = 2 yr $r = 0.271$ M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2	vale 8.0 mm Z1 × M5_60min > Z2 × M5_30min; =	< (1 + p _{climate}) = = 13.7 mm	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity	Cross yr return period minutes duration o global warming ar return period ar return period	Other $D = 30$ min Period = 2 yr $r = 0.271$ M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min	vale 8.0 mm Z1 × M5_60min > Z2 × M5_30min _i = nin / D = 27.4 mn	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff	Cross yr return period minutes duration o global warming o global warming ar return period	S section of sv Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20% Z1 = 0.76 M5_30min _i = 22 Z2 = 0.83 M2_30min = Z Imax = M2_30min	vale 8.0 mm Z1 × M5_60min > Z2 × M5_30min; = nin / D = 27.4 mn	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area	Cross yr return period minutes duration o global warming ar return period ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 140 min	vale 8.0 mm Z1 × M5_60min > Z2 × M5_30min _i = hin / D = 27.4 mn	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impern	Cross yr return period minutes duration o global warming o global warming ar return period	Section of sv Other D = 30 min Period = 2 yr r = 0.271 $M5_60min = 1$ pclimate = 20 % Z1 = 0.76 $M5_30min_i = 2$ Z2 = 0.83 $M2_30min = 2$ $I_{max} = M2_30mi$ $A_{catch} = 140 min$ p = 95 %	vale 8.0 mm Z1 × M5_60min > Z2 × M5_30min _i = nin / D = 27.4 mn	< (1 + p _{dimate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff	Cross yr return period minutes duration o global warming ar return period ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 140 min p = 95 % Qmax = Acatch ×	vale 8.0 mm 21 × M5_60min > 22 × M5_30min _i = nin / D = 27.4 mn 2 p × I _{max} = 1.0 I/s	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it	Cross yr return period minutes duration o global warming ar return period ar return period meable	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 140 min p = 95 % Qmax = Acatch × ing's formula	vale 8.0 mm $Z1 \times M5_{60min} >$ $Z2 \times M5_{30min_i} =$ hin / D = 27.4 mn $P \times I_{max} =$ 1.0 I/s	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	Cross yr return period minutes duration o global warming ar return period ar return period meable	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 140 min p = 95 % Qmax = Acatch × ing's formula x = 37 mm	vale 8.0 mm 21 × M5_60min > 22 × M5_30min _i = nin / D = 27.4 mn 2 p × I _{max} = 1.0 I/s	< (1 + p _{dimate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperin Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	Cross yr return period minutes duration o global warming ar return period ar return period meable meable meable Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 140 min p = 95 % Qmax = Acatch × ing's formula x = 37 mm of flow is less	vale 8.0 mm $Z1 \times M5_60min >$ $Z2 \times M5_30min_i =$ nin / D = 27.4 mn $P \times I_{max} = 1.0 I/s$ is than or equal to	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	Cross yr return period minutes duration o global warming ar return period ar return period meable meable meable Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 140 min p = 95 % Qmax = Acatch × ing's formula x = 37 mm of flow is less A = (w + x / s)	vale 8.0 mm $Z1 \times M5_{60min} >$ $Z2 \times M5_{30min_i} =$ nin / D = 27.4 mn $P \times I_{max} = 1.0 I/s$ than or equal to $X = 0.021 m^2$	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	Cross yr return period minutes duration o global warming ar return period ar return period meable ceration of Manni Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 140 min p = 95 % Qmax = Acatch × ing's formula x = 37 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2)}$	vale 8.0 mm $Z1 \times M5_{60min} >$ $Z2 \times M5_{30min_i} =$ hin / D = 27.4 mn $P \times I_{max} = 1.0 I/s$ than or equal to $X = 0.021 m^2$ $X^2 + (X / S)^2) = 0.0$	< (1 + p _{climate}) = = 13.7 mm n/hr 56 100 mm so 1	16.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	Cross yr return period minutes duration o global warming ar return period ar return period meable meable meable Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 140 min p = 95 % Qmax = Acatch × ing's formula x = 37 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(n + 1)^2}$	vale 8.0 mm $Z1 \times M5_{60} = 22 \times M5_{30} = 30$ $Z2 \times M5_{30} = 1.0$ l/s $Z2 \times M5_{30}$	< (1 + p _{climate}) = = 13.7 mm n/hr 50 100 mm so 5	16.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due t Factor Z1 (Wallingford procedure Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperin Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius Check flow using Manning equati	Cross yr return period minutes duration o global warming ar return period ar return period meable meable meable meable meable	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 140 min p = 95 % Qmax = Acatch × ang's formula x = 37 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2 + 3)^2}$ R = A / P = 0.0 Qcheck = A × (R	vale 8.0 mm 21 × M5_60min > 22 × M5_30min _i = nin / D = 27.4 mn 2 p × I _{max} = 1.0 I/s 5 than or equal to x = 0.021 m ² x ² + (x / s) ²) = 0.0 30 m 2 / 1 m) ^{2/3} × S ^{1/2} >	< (1 + p _{climate}) = = 13.7 mm n/hr 50 <i>100 mm</i> so 3 686 m	16.4 mm filtration is effe	ective (cl.

X	Project Kilternan Vilage				Job Ref. 2104	
Roger Mullarkey & Associates Duncreevan	Section Swale 8				Sheet no./rev. 2	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ Wtotal,min = 2 × (x + d_{\text{free}}) / s + w = \textbf{1.583} \text{ m}

	Project Kilternan Vilage	e			Job Ref. 2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 9				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DESI	GN					1
In accordance with CIRIA publica	tion C753 - The	e SUDS Manua	I			tion vorsion (
Swale details						
Width of swale base		w = 0.450 m				
Longitudinal gradient of swale		S = 0.015				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.25				
Length of swale		L= 17 m				
			N V			
			150			
1						
3		450	↑ '			
		430		I		
		—1675——				
	Cross	section of sw	مادر			
	0.000					
	0,000					
Design rainfall intensity	0.000					
Design rainfall intensity Location of catchment area		Other				
Design rainfall intensity Location of catchment area Storm duration	0.000	Other D = 30 min				
Design rainfall intensity Location of catchment area Storm duration Return period		Other D = 30 min Period = 2 yr				
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr	return period	Other D = 30 min Period = 2 yr r = 0.271				
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m	return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1	8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g	return period inutes duration global warming	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 %	8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure)	return period inutes duration global warming	Other D = 30 min Period = 2 yr r = 0.271 $M5_{60} \text{min} = 1$ $p_{climate} = 20 \%$ Z1 = 0.76	8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year	return period inutes duration global warming return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2	8.0 mm 21 × M5_60min >	< (1 + pclimate) = 1	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure)	return period inutes duration global warming return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30mini = 2 Z2 = 0.83	8.0 mm 21 × M5_60min >	< (1 + pclimate) = 1	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year	return period inutes duration global warming return period return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = Z Z2 = 0.83 M2_30min = Z	8.0 mm 21 × M5_60min > 2 × M5_30min; =	< (1 + pclimate) = 1 = 13.7 mm	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity	return period inutes duration global warming return period return period	Other D = 30 min Period = 2 yr r = 0.271 $M5_{-}60\text{min} = 1$ poimate = 20 % Z1 = 0.76 $M5_{-}30\text{min} = 2$ Z2 = 0.83 $M2_{-}30\text{min} = 2$ $I_{max} = M2_{-}30\text{min}$	8.0 mm 21 × M5_60min > 2 × M5_30min _i = iin / D = 27.4 mn	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff	return period inutes duration global warming return period return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30mini = Z Z2 = 0.83 M2_30min = Z Imax = M2_30min	8.0 mm 21 × M5_60min > 2 × M5_30min; = nin / D = 27.4 mn	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area	return period inutes duration global warming return period return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z I _{max} = M2_30min A _{catch} = 250 min	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme	return period inutes duration global warming return period return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = Z Z2 = 0.83 M2_30min = Z I _{max} = M2_30m A _{catch} = 250 m ² p = 95 %	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme Maximum surface water runoff	return period inutes duration global warming return period return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 250 min p = 95 % Qmax = Acatch ×	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mm 2 p × I _{max} = 1.8 I/s	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	l 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme Maximum surface water runoff Calculate depth of flow using iter	return period inutes duration global warming return period return period able able	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 250 min p = 95 % Qmax = Acatch × ng's formula	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn 2 $p × I_{max} = 1.8 I/s$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow	return period inutes duration global warming return period return period able able	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 250 m p = 95 % Qmax = Acatch × ng's formula x = 52 mm	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn 2 p × I _{max} = 1.8 I/s	< (1 + p _{climate}) = 1 = 13.7 mm n/hr	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow	return period inutes duration global warming return period return period able able ation of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 250 m² p = 95 % Qmax = Acatch × ng's formula x = 52 mm of flow is less	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn 2 $p × I_{max} = 1.8 l/s$ <i>than or equal t</i>	< (1 + p _{climate}) = 1 = 13.7 mm n/hr io 100 mm so fi	6.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow	return period inutes duration global warming return period return period able able ation of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 250 m p = 95 % Qmax = Acatch × ng's formula x = 52 mm of flow is less A = (w + x / s)	8.0 mm 21 × M5_60min > 2 × M5_30min _i = ain / D = 27.4 mm p × I _{max} = 1.8 I/s than or equal t × x = 0.032 m ²	< (1 + pclimate) = 1 = 13.7 mm n/hr to 100 mm so fi	l 6.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow	return period inutes duration global warming return period return period able ation of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30mini = Z Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 250 min p = 95 % Qmax = Acatch × ng's formula x = 52 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(x + 1)^2}$	8.0 mm 21 × M5_60min > 2 × M5_30min _i = $2 \times M5_30min_i =$ $2 \times M5_30min_i =$	< (1 + p _{climate}) = 1 = 13.7 mm n/hr io 100 mm so fi 782 m	6.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	return period inutes duration global warming return period return period able ation of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 250 m p = 95 % Qmax = Acatch × ng's formula x = 52 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(x - 1)^2}$ R = A / P = 0.0	8.0 mm 21 × M5_60min > 22 × M5_30min _i = 32 × M5_30min _i =	< (1 + p _{climate}) = 1 = 13.7 mm n/hr to 100 mm so fi 782 m	6.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 yr 5-year return period rainfall of 60 m Increase of rainfall intensity due to g Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperme Maximum surface water runoff Calculate depth of flow using iter Minimum depth of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	return period inutes duration global warming return period return period able ation of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30mini = Z Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 250 min p = 95 % Qmax = Acatch × ng's formula x = 52 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2)}$ R = A / P = 0.0 Qcheck = A × (R	8.0 mm 21 × M5_60min > 2 × M5_30min; = 12 × M5_30min; = 13 / D = 27.4 mm 2 p × I _{max} = 1.8 I/s than or equal to x x = 0.032 m ² x ² + (x / s) ²) = 0.7 040 m 1 / 1 m) ^{2/3} × S ^{1/2} >	< (1 + p _{climate}) = 1 = 13.7 mm n/hr to 100 mm so fi 782 m < 1 m/s / n = 1.8	I 6.4 mm	ective (cl. 1

X	Project Kilternan Vilage				Job Ref. 2104	
Roger Mullarkey & Associates Duncreevan	Section Swale 9				Sheet no./rev. 2	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ Wtotal,min = 2 × (x + d_{\text{free}}) / s + w = \textbf{1.675} m

	Project Kilternan Vilage	e			Job Ref. 2104	
Pogor Mullarkov & Associatos	Section				Sheet no./rev.	
Duncreevan	Swale 10				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DES	SIGN					
In accordance with CIRIA public	cation C753 - The	e SUDS Manua	I		Tedds calcula	ation version
Swale details						
Width of swale base		w = 0.450 m				
Longitudinal gradient of swale		S = 0.020				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.25				
Length of swale		L= 21 m				
			∞ ↓			
			- 38			
1						
3						
			,			
		1590				
	-					
	Cross	s section of sw	/ale			
Design rainfall intensity						
Design rainfall intensity Location of catchment area		Other				
Design rainfall intensity Location of catchment area Storm duration		Other D = 30 min				
Design rainfall intensity Location of catchment area Storm duration Return period		Other D = 30 min Period = 2 yr				
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5	yr return period	Other D = 30 min Period = 2 yr r = 0.271				
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60	yr return period minutes duration	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1	8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to	yr return period minutes duration o global warming	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 %	8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure)	yr return period minutes duration o global warming)	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76	8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year	yr return period minutes duration o global warming) ar return period	Other D = 30 min Period = 2 yr r = 0.271 $M5_60min = 1$ p _{climate} = 20 % Z1 = 0.76 $M5_30min_i = 2$	8.0 mm 21 × M5_60min >	< (1 + p _{climate}) =	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure)	yr return period minutes duration o global warming) ar return period)	Other D = 30 min Period = 2 yr r = 0.271 $M5_60\text{min} = 1$ $p_{climate} = 20 \%$ Z1 = 0.76 $M5_30\text{min}_i = 2$ Z2 = 0.83	8.0 mm 21 × M5_60min >	< (1 + p _{climate}) =	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Rainfall for 30min storm with 2 year	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = 2	8.0 mm 21 × M5_60min > 2 × M5_30min; =	< (1 + p _{climate}) = = 13.7 mm	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 $M5_60\text{min} = 1$ $p_{climate} = 20 \%$ Z1 = 0.76 $M5_30\text{min} = 2$ Z2 = 0.83 $M2_30\text{min} = 2$ $I_{max} = M2_30\text{min}$	8.0 mm 21 × M5_60min > 2 × M5_30min; = nin / D = 27.4 mn	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z $I_{max} = M2_30mi$	8.0 mm 21 × M5_60min > 2 × M5_30min₁ = nin / D = 27.4 mn	< (1 + p _{climate}) = = 13.7 mm n/hr	1 6.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min_i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 165 min	8.0 mm 21 × M5_60min > 2 × M5_30min; = nin / D = 27.4 mn	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = Z Z2 = 0.83 M2_30min = Z I _{max} = M2_30m A _{catch} = 165 m ² p = 95 %	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 165 min p = 95 % Qmax = Acatch \times	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn 2 p × Imax = 1.2 I/s	c (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff	yr return period minutes duration o global warming) ar return period) ar return period meable	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m A _{catch} = 165 m ² p = 95 % Q _{max} = A _{catch} × ng's formula	8.0 mm 21 × M5_60min > 22 × M5_30min _i = nin / D = 27.4 mn	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yes Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	yr return period minutes duration o global warming) ar return period) ar return period meable eration of Manni	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 165 m ² p = 95 % Qmax = Acatch × ng's formula x = 38 mm	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mn 2 $p × I_{max} = 1.2 I/s$	< (1 + p _{climate}) = = 13.7 mm n/hr	16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	yr return period minutes duration o global warming) ar return period) ar return period meable eration of Manni	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 165 m² p = 95 % Qmax = Acatch × ng's formula x = 38 mm of flow is less	8.0 mm 21 × M5_60min > 2 × M5_30min _i = nin / D = 27.4 mm p × I _{max} = 1.2 I/s <i>than or equal f</i>	< (1 + p _{climate}) = = 13.7 mm n/hr 0 <i>100 mm</i> so	16.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	yr return period minutes duration o global warming) ar return period) ar return period meable eration of Manni Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 165 min p = 95 % Qmax = Acatch × ng's formula x = 38 mm of flow is less A = (w + x / s)	8.0 mm 21 × M5_60min > 2 × M5_30min; = nin / D = 27.4 mn p × I _{max} = 1.2 I/s than or equal to × x = 0.022 m ²	c (1 + p _{climate}) = = 13.7 mm n/hr o <i>100 mm</i> so	16.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	yr return period minutes duration o global warming) ar return period) ar return period meable teration of Manni	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30m Acatch = 165 m² p = 95 % Qmax = Acatch × ng's formula x = 38 mm of flow is less A = (w + x / s) P = w + 2 × 3/4	8.0 mm 21 × M5_60min > 2 × M5_30min _i = in / D = 27.4 mn 2 p × I _{max} = 1.2 I/s than or equal t × x = 0.022 m ² y ² + (x / s) ² = 0.0	< (1 + p _{climate}) = = 13.7 mm n/hr o <i>100 mm</i> so	16.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	yr return period minutes duration o global warming) ar return period) ar return period neable reration of Manni Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 165 m p = 95 % Qmax = Acatch × ng's formula x = 38 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2)}$	8.0 mm 21 × M5_60min > 22 × M5_30min _i = 32 × M5_30min _i = 32 × M5_30min _i = 32 × M5_30min _i = 32 × M5_30min _i = 42 × M5_30min _i =	< (1 + p _{climate}) = = 13.7 mm n/hr o <i>100 mm</i> so 593 m	16.4 mm	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	yr return period minutes duration o global warming) ar return period) ar return period meable eration of Manni Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 165 m² p = 95 % Qmax = Acatch × ng's formula x = 38 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2)}$ R = A / P = 0.0 Quint = A × (2)	8.0 mm 21 × M5_60min > 2 × M5_30min; = $2 \times M5_30min; =$ $2 \times M5_30min; =$ $2 \times M5_30min; =$ $2 \times M5_30min; =$ $2 \times M5_60min >$ $2 \times M5_60min >$	 (1 + p_{climate}) = 13.7 mm h/hr o 100 mm so 593 m 1 m/o (n - 1) 	16.4 mm filtration is effe	ective (cl.
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	yr return period minutes duration o global warming) ar return period) ar return period meable eration of Manni Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 165 m² p = 95 % Qmax = Acatch × ng's formula x = 38 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(x)}$ R = A / P = 0.0 Qcheck = A × (R)	8.0 mm 21 × M5_60min > 2 × M5_30min _i = 2 × M5_30min _i = 10 / D = 27.4 mm 2 p × Imax = 1.2 I/s than or equal to x = 0.022 m ² x ² + (x / s) ²) = 0.0 31 m 1 / 1 m) ^{2/3} × S ^{1/2} ×	< (1 + p _{climate}) = = 13.7 mm n/hr o <i>100 mm so</i> 5 93 m : 1 m/s / n = 1. 2	16.4 mm filtration is effe	ective (cl.

X	Project Kilternan Vilage				Job Ref. 2104	
Roger Mullarkey & Associates Duncreevan	Section Swale 10				Sheet no./rev. 2	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ Wtotal,min = 2 × (x + d_{\text{free}}) / s + w = \textbf{1.590} \text{ m}

	Kilternan Vilage	е			2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 11				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DES	<u>SIGN</u> cation C753 - The	e SUDS Manua	l		Tedds calcula	ation version 2.0
Swale details						
Width of swale base		w = 0.750 m				
Longitudinal gradient of swale		S = 0.008				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.25				
Length of swale		L = 14 m				
			50)		
			-65			
1				_		
Ū	↓	— 750——				
		2054	I			
		2051				
	Cross	s section of sw	vale			
Design rainfall intensity		Other				
Design rainfall intensity Location of catchment area		Other				
Design rainfall intensity Location of catchment area Storm duration		Other D = 30 min				
Design rainfall intensity Location of catchment area Storm duration Return period	ur roturn poriod	Other D = 30 min Period = 2 yr r = 0.271				
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5	yr return period	Other D = 30 min Period = 2 yr r = 0.271 M5. 60 min = 1	9 0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to	yr return period minutes duration	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1	8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Eactor 71 (Wallingford procedure)	yr return period minutes duration o global warming	Other D = 30 min Period = 2 yr r = 0.271 $M5_60min = 1$ polimate = 20 % 71 = 0.76	8.0 mm			
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure)	yr return period minutes duration o global warming) ar return period	Other D = 30 min Period = 2 yr r = 0.271 $M5_60\text{min} = 1$ polimate = 20 % Z1 = 0.76 M5_20 min = 20	8.0 mm		- 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year	yr return period minutes duration o global warming) ar return period	Other D = 30 min Period = 2 yr r = 0.271 $M5_60min = 1$ polimate = 20 % Z1 = 0.76 $M5_30min_i = 2$ $Z^2 = 0.93$	1 8.0 mm Z1 × M5_60mir	n × (1 + p _{climate}) =	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure)	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 $M5_60min = 1$ poimate = 20 % Z1 = 0.76 $M5_30min_i = 2$ Z2 = 0.83 M2_20min = 7	1 8.0 mm Z1 × M5_60mir	n × (1 + p _{climate}) =	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 $M5_60min = 1$ pclimate = 20 % Z1 = 0.76 $M5_30min_1 = 2$ Z2 = 0.83 $M2_30min = 2$	1 8.0 mm Z1 × M5_60mir Z2 × M5_30mir	n × (1 + p _{climate}) = h = 13.7 mm	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 $M5_60min = 1$ pcimate = 20 % Z1 = 0.76 $M5_30min_i = 2$ Z2 = 0.83 $M2_30min = 2$ $I_{max} = M2_30min_i$	8.0 mm Z1 × M5_60mir Z2 × M5_30mir nin / D = 27.4 r	n × (1 + p _{climate}) = h = 13.7 mm nm/hr	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 $M5_60min = 1$ polimate = 20 % Z1 = 0.76 $M5_30min_1 = 2$ Z2 = 0.83 $M2_30min = 2$ $I_{max} = M2_30mi$	1 8.0 mm Z1 × M5_60mir Z2 × M5_30mir nin / D = 27.4 r	n × (1 + p _{climate}) = h = 13.7 mm nm/hr	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 500 min	1 8.0 mm Z1 × M5_60mir Z2 × M5_30mir nin / D = 27.4 r	n × (1 + p _{climate}) = h = 13.7 mm nm/hr	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 500 min p = 80 %	1 8.0 mm 21 × M5_60mir 22 × M5_30mir nin / D = 27.4 r	n × (1 + p _{climate}) = h = 13.7 mm nm/hr	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermonant Maximum surface water runoff	yr return period minutes duration o global warming) ar return period) ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 500 min p = 80 % Qmax = Acatch ×	8.0 mm Z1 × M5_60mir Z2 × M5_30mir nin / D = 27.4 r ₂ p × I _{max} = 3.0 l	n × (1 + p _{climate}) = h = 13.7 mm nm/hr	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it	yr return period minutes duration o global warming) ar return period) ar return period heable eration of Manni	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 500 min p = 80 % Qmax = Acatch \times ng's formula	1 8.0 mm 21 × M5_60mir 22 × M5_30mir nin / D = 27.4 r 2 p × I _{max} = 3.0 l	n × (1 + p _{climate}) = h = 13.7 mm nm/hr /s	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	yr return period minutes duration o global warming) ar return period) ar return period heable eration of Manni	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30m Acatch = 500 m p = 80 % Qmax = Acatch × ng's formula x = 65 mm	8.0 mm $Z1 \times M5_60 \text{min} $ $Z2 \times M5_30 \text{min} $ D = 27.4 min $p \times I_{\text{max}} = 3.0 \text{ min} $	n × (1 + p _{climate}) = h = 13.7 mm nm/hr /s	= 16.4 mm	
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	yr return period minutes duration o global warming) ar return period) ar return period heable eration of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 500 min p = 80 % Qmax = Acatch × ng's formula x = 65 mm of flow is less	1 8.0 mm 21 × M5_60mir 22 × M5_30mir nin / D = 27.4 r 2 p × I _{max} = 3.0 l	n × (1 + p _{climate}) = h = 13.7 mm nm/hr /s	= 16.4 mm	ective (cl.1)
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	yr return period minutes duration o global warming) ar return period) ar return period heable eration of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30m Acatch = 500 m p = 80 % Qmax = Acatch × mg's formula x = 65 mm of flow is less A = (w + x / s)	8.0 mm $Z1 \times M5_{60}$ min $Z2 \times M5_{30}$ min D = 27.4 min $p \times I_{max} = 3.0$ min T T T T T T T T	n × (1 + p _{climate}) = h = 13.7 mm nm/hr /s / s	= 16.4 mm	ective (cl.1)
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow	yr return period minutes duration o global warming) ar return period) ar return period heable eration of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 500 min p = 80 % Qmax = Acatch × ng's formula x = 65 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(1 + 1)^2}$	8.0 mm $Z1 \times M5_60mir$ $Z2 \times M5_30mir$ rin / D = 27.4 r $p \times I_{max} = 3.0 l$ 5 <i>than or equa</i> $\times x = 0.061 mir$ $x^2 + (x / s)^2) = 1$	n × (1 + p _{climate}) = h = 13.7 mm nm/hr /s <i>I to 100 mm so</i> 2 1.163 m	= 16.4 mm	ective (cl.1
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius	yr return period minutes duration o global warming) ar return period) ar return period heable eration of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 500 m p = 80 % Qmax = Acatch × ng's formula x = 65 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(}$ R = A / P = 0.0	8.0 mm $Z1 \times M5_{60}$ min $Z2 \times M5_{30}$ min D = 27.4 min D = 27.4 min $X^2 + (x / s)^2) = 100$	n × (1 + p _{climate}) = h = 13.7 mm nm/hr /s / 1 to 100 mm so 2 1.163 m	= 16.4 mm	ective (cl.1
Design rainfall intensity Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	yr return period minutes duration o global warming) ar return period) ar return period heable eration of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 500 min p = 80 % Qmax = Acatch × ng's formula x = 65 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(R = A / P = 0.1)}$ Qcheck = A × (F	8.0 mm $Z1 \times M5_{60}$ min $Z2 \times M5_{30}$ min D = 27.4 min $p \times I_{max} = 3.0$ min $x^2 + (x / s)^2 = 100$ $x^2 + (x / s)^2 = 100$	n × (1 + p _{climate}) = h = 13.7 mm nm/hr /s <i>I to 100 mm so</i> 1.163 m ² × 1 m/s / n = 3	= 16.4 mm • <i>filtration is effe</i> . 1 l/s	ective (cl.1)

X	Project Kilternan Vilage				Job Ref. 2104	
Roger Mullarkey & Associates Duncreevan	Section Swale 11				Sheet no./rev. 2	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

PASS - velocity is small enough to encourage settlement and prevent erosion (cl.17.4.1)

Minimum width

Freeboard

Minimum required swale width

 $d_{free} = 150 \text{ mm}$ Wtotal,min = 2 × (x + dfree) / s + w = 2.051 m

	Project Kilternan Vilage	e			Job Ref. 2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 12				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DE	SIGN					
In accordance with CIRIA public	cation C753 - The	e SUDS Manua	l		Tedds calcula	tion version 2.
Swale details						
Width of swale base		w = 0.750 m				
Longitudinal gradient of swale		S = 0.020				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.25				
Length of swale		L = 65 m				
			50			
	~		- <u>0</u>			
1			Y			
3						
	◀	— 750——	→ '			
		2040				
	0					
	Close	section of sv	vale			
Design rainfall intensity						
Location of catchment area		Other				
Storm duration		D = 30 min				
Return period		Period = 2 yr				
Ratio 60 min to 2 day rainfall of 5	yr return period	r = 0.271				
5-year return period rainfall of 60	minutes duration	M5_60min = 1	8.0 mm			
Increase of rainfall intensity due to	o global warming	pclimate = 20 %				
Factor 71 (Wallingford procedure)						
)	Z1 = 0.76				
Rainfall for 30min storm with 5 ye) ar return period	Z1 = 0.76 M5_30min _i = 2	Z1 × M5_60min	imes (1 + p _{climate}) =	• 16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure)) ar return period)	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83	Z1 × M5_60min	imes (1 + p _{climate}) =	: 16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye) ar return period) ar return period	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2	Z1 × M5_60min Z2 × M5_30min₁	× (1 + p _{climate}) = = 13.7 mm	16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity) ar return period) ar return period	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 I _{max} = M2_30n	Z1 × M5_60min 72 × M5_30min _i nin / D = 27.4 m	× (1 + p _{climate}) = = 13.7 mm m/hr	• 16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff) ar return period) ar return period	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min	Z1 × M5_60min Z2 × M5_30min _i nin / D = 27.4 m	× (1 + p _{climate}) = = 13.7 mm m/hr	16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area) ar return period) ar return period	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 750 min	Z1 × M5_60min 72 × M5_30min _i nin / D = 27.4 m 2	× (1 + p _{climate}) = = 13.7 mm m/hr	16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm) ar return period) ar return period neable	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 750 m p = 80%	Z1 × M5_60min Z2 × M5_30min _i nin / D = 27.4 m	× (1 + p _{climate}) = = 13.7 mm m/hr	16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff) ar return period) ar return period neable	Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30m A _{catch} = 750 m p = 80 % Q _{max} = A _{catch} ×	Z1 × M5_60min Z2 × M5_30min _i nin / D = 27.4 m $p × I_{max} = 4.6 1/s$	× (1 + p _{climate}) = = 13.7 mm m/hr	16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it) ar return period) ar return period heable eration of Manni	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30m Acatch = 750 m p = 80 % $Q_{max} = A_{catch} \times$ ng's formula	Z1 × M5_60min Z2 × M5_30min; nin / D = 27.4 m 2 p × I _{max} = 4.6 1/3	× (1 + p _{climate}) = = 13.7 mm m/hr	16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow) ar return period) ar return period heable eration of Manni	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30m Acatch = 750 m p = 80 % $Q_{max} = A_{catch} \times$ ng's formula x = 63 mm	Z1 × M5_60min Z2 × M5_30min _i nin / D = 27.4 m 2 p × I _{max} = 4.6 l/s	× (1 + p _{climate}) = = 13.7 mm m/hr	16.4 mm	
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow) ar return period) ar return period neable eration of Manni <i>Depth</i>	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30m Acatch = 750 m p = 80 % $Q_{max} = A_{catch} \times$ ng's formula x = 63 mm of flow is less	Z1 × M5_60min Z2 × M5_30min; nin / D = 27.4 m 2 p × I _{max} = 4.6 l/s 5 <i>than or equal</i>	× (1 + p _{climate}) = = 13.7 mm m/hr S	filtration is effe	ctive (cl. 1
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow) ar return period) ar return period heable eration of Manni <i>Depth</i>	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min = 2 Imax = M2_30min = 2 Imax = M2_30min = 2 Acatch = 750 min p = 80 % Qmax = Acatch × mg's formula x = 63 mmin flow is less A = (w + x / s)	Z1 × M5_60min Z2 × M5_30min nin / D = 27.4 m p × I _{max} = 4.6 l/s 5 <i>than or equal</i> × x = 0.059 m ²	× (1 + p _{climate}) = = 13.7 mm m/hr s to 100 mm so	filtration is effe	ctive (cl. 1
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow) ar return period) ar return period neable eration of Manni <i>Depth</i>	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min Acatch = 750 min p = 80 % Qmax = Acatch × mg's formula x = 63 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(}$	Z1 × M5_60min Z2 × M5_30min inin / D = 27.4 m p × I _{max} = 4.6 l/s 5 <i>than or equal</i> × x = 0.059 m ² x ² + (x / s) ²) = 1	× (1 + p _{climate}) = = 13.7 mm m/hr s to 100 mm so .151 m	filtration is effe	ctive (cl.1
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius) ar return period) ar return period neable eration of Manni <i>Depth</i>	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min A _{catch} = 750 m p = 80 % Q _{max} = A _{catch} × ng's formula x = 63 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(}$ R = A / P = 0.0	Z1 × M5_60min Z2 × M5_30min _i nin / D = 27.4 m p × I _{max} = 4.6 l/s 5 <i>than or equal</i> × x = 0.059 m ² x ² + (x / s) ²) = 1 051 m	× (1 + p _{climate}) = = 13.7 mm m/hr s to 100 mm so .151 m	filtration is effe	ctive (cl.1
Rainfall for 30min storm with 5 ye Factor Z2 (Wallingford procedure Rainfall for 30min storm with 2 ye Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using it Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius Check flow using Manning equation) ar return period) ar return period neable eration of Manni <i>Depth</i>	Z1 = 0.76 M5_30mini = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30min = 2 Imax = M2_30min = 2 Imax = M2_30min = 2 Max = M2_30	Z1 × M5_60min Z2 × M5_30min; nin / D = 27.4 m 2 p × I _{max} = 4.6 l/s 5 <i>than or equal</i> × x = 0.059 m ² x ² + (x / s) ²) = 1 051 m Z / 1 m) ^{2/3} × S ^{1/2}	× (1 + p _{climate}) = = 13.7 mm m/hr s to 100 mm so .151 m × 1 m/s / n = 4.	filtration is effe	ctive (cl.1

X	Project Kilternan Vilage				Job Ref. 2104	
Roger Mullarkey & Associates Duncreevan	Section Swale 12				Sheet no./rev. 2	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

PASS - velocity is small enough to encourage settlement and prevent erosion (cl.17.4.1)

Minimum width

Freeboard

Minimum required swale width

 $d_{free} = 150 \text{ mm}$ Wtotal,min = 2 × (x + dfree) / s + w = 2.040 m

	Project Kilternan Vilage	е			Job Ref. 2104	
Roger Mullarkey & Associates	Section				Sheet no./rev.	
Duncreevan	Swale 13				1	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date
SWALE AND FILTER STRIP DES	bign					
In accordance with CIRIA public	ation C753 - The	e SUDS Manua	l		Todde colouis	
Swala dataila					I EUUS CAICUIA	
Width of swale base		w – 0 750 m				
I ongitudinal gradient of swale		S = 0.730 m				
Side slope gradient of swale		s = 0.020				
Manning number		n = 0.25				
Length of swale		l = 16 m				
Longinor on allo			\bot			
			-42 •0			
1			22	-		
3						
	↓	— 750——	→ '			
		1911				
		1911				
	Cross	s section of sv	vale			
Design rainfall intensity						
Location of catchment area		Other				
Location of catchment area Storm duration		Other D = 30 min				
Location of catchment area Storm duration Return period		Other D = 30 min Period = 2 yr				
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5	yr return period	Other D = 30 min Period = 2 yr r = 0.271				
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60	yr return period minutes duration	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1	8.0 mm			
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 n Increase of rainfall intensity due to	yr return period minutes duration o global warming	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 %	8.0 mm			
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure)	yr return period minutes duration 9 global warming	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 $p_{climate} = 20 \%$ Z1 = 0.76	8.0 mm			
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 n Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year	yr return period minutes duration o global warming ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2	8.0 mm Z1 × M5_60min >	< (1 + p _{climate}) = *	16.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 m Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure)	yr return period minutes duration global warming ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83	8.0 mm Z1 × M5_60min >	< (1 + p _{climate}) = ŕ	16.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 m Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year	yr return period minutes duration o global warming ar return period ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = 2	8.0 mm Z1 × M5_60min > Z2 × M5_30min _i =	< (1 + p _{climate}) = 1 = 13.7 mm	16.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 m Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity	yr return period minutes duration global warming ar return period ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20% Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min	8.0 mm Z1 × M5_60min > Z2 × M5_30min; = nin / D = 27.4 mr	< (1 + p _{climate}) = * = 13.7 mm n/hr	16.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff	yr return period minutes duration o global warming ar return period ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20% Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z I _{max} = M2_30min	8.0 mm Z1 × M5_60min > Z2 × M5_30min _i = nin / D = 27.4 mr	< (1 + p _{climate}) = ⁻ = 13.7 mm n/hr	16.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 m Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area	yr return period minutes duration global warming ar return period ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z I _{max} = M2_30min A _{catch} = 365 min	8.0 mm Z1 × M5_60min > Z2 × M5_30mini = nin / D = 27.4 mr	< (1 + p _{climate}) = ^ = 13.7 mm n/hr	I6.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm	yr return period minutes duration o global warming ar return period ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z I _{max} = M2_30min A _{catch} = 365 min p = 80 %	8.0 mm Z1 × M5_60min > Z2 × M5_30min _i = nin / D = 27.4 mr	< (1 + p _{climate}) = * = 13.7 mm n/hr	16.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermontation Maximum surface water runoff	yr return period minutes duration global warming ar return period ar return period	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 p _{climate} = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = 2 I _{max} = M2_30m A _{catch} = 365 m p = 80 % Q _{max} = A _{catch} ×	8.0 mm $Z1 \times M5_60min >$ $Z2 \times M5_30min_i =$ min / D = 27.4 mr $P \times Imax = 2.2 I/s$	< (1 + p _{climate}) = * = 13.7 mm n/hr	16.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermontant Maximum surface water runoff Calculate denth of flow using it	yr return period minutes duration global warming ar return period ar return period eable	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30m Acatch = 365 m p = 80 % Qmax = Acatch × ng's formula	8.0 mm $Z1 \times M5_60min >$ $Z2 \times M5_30min_i =$ rin / D = 27.4 mr $p \times Imax = 2.2 I/s$	< (1 + p _{climate}) = * = 13.7 mm n/hr	16.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	yr return period minutes duration o global warming ar return period ar return period eration of Manni	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30n Acatch = 365 min p = 80 % Qmax = Acatch × ng's formula x = 42 mm	8.0 mm $Z1 \times M5_60min >$ $Z2 \times M5_30min_i =$ nin / D = 27.4 mr $p \times Imax = 2.2 I/s$	< (1 + p _{climate}) = * = 13.7 mm n/hr	16.4 mm	
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	yr return period minutes duration o global warming ar return period ar return period eable eration of Manni	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 365 min p = 80 % Qmax = Acatch × ng's formula x = 42 mm	8.0 mm $21 \times M5_{60min} > 22 \times M5_{30min_i} = 100 mm^2$ $p \times Imax = 2.2 l/s^2$	< (1 + p _{climate}) = ² = 13.7 mm n/hr	I6.4 mm	ective (cl
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 year Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 year Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is impermon Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	yr return period minutes duration o global warming ar return period ar return period eration of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30n Acatch = 365 min p = 80 % Qmax = Acatch × ng's formula x = 42 mm of flow is less A = (w + x / s)	8.0 mm $Z1 \times M5_{60min} > Z2 \times M5_{30min_1} = 2$ $D = 27.4 mr^2$ $p \times I_{max} = 2.2 I/s$ $S than or equal to 2 = 2 = 0.036 m^2$	< (1 + p _{climate}) = <i>i</i> = 13.7 mm n/hr to 100 mm so f	I6.4 mm	ective (cl.
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperment Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	yr return period minutes duration o global warming ar return period ar return period eable eration of Manni Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30n Acatch = 365 min p = 80 % Qmax = Acatch × ng's formula x = 42 mm of flow is less A = (w + x / s) P = W + 2 x of/	8.0 mm $Z1 \times M5_60min >$ $Z2 \times M5_30min_i =$ min / D = 27.4 mr $P \times Imax = 2.2 I/s$ than or equal to $X = 0.036 m^2$ $Y^2 + (Y + 2)^2 = 1.4$	< (1 + p _{climate}) = ⁻ = 13.7 mm n/hr to <i>100 mm</i> so f	I6.4 mm	ective (cl.
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow	yr return period minutes duration o global warming ar return period ar return period eable eration of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pclimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30n Acatch = 365 min p = 80 % Qmax = Acatch × mg's formula x = 42 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2 - 3)^2}$	8.0 mm 21 × M5_60min > 22 × M5_30min _i = nin / D = 27.4 mr 2 p × Imax = 2.2 I/s 5 than or equal to $x = 0.036 m^2$ $x^2 + (x / s)^2) = 1.0$	< (1 + p _{climate}) = <i>i</i> = 13.7 mm n/hr to 100 mm so f 015 m	I6.4 mm	ective (cl.
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Perimeter of flow Hydraulic radius	yr return period minutes duration o global warming ar return period ar return period eable eration of Manni Depth	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 polimate = 20 % Z1 = 0.76 M5_30min = 2 Z2 = 0.83 M2_30min = 2 Imax = M2_30n Acatch = 365 min p = 80 % Qmax = Acatch × ng's formula x = 42 mm of flow is less A = (w + x / s) P = w + 2 × $\sqrt{(2 + 3)^2}$ R = A / P = 0.0 Que A = (2 + 3) (2 + 3)	8.0 mm $Z1 \times M5_{60} = 0$ $Z2 \times M5_{30} = 0$	< (1 + p _{climate}) = = 13.7 mm n/hr to <i>100 mm</i> so f 0 15 m	16.4 mm	ective (cl.
Location of catchment area Storm duration Return period Ratio 60 min to 2 day rainfall of 5 5-year return period rainfall of 60 min Increase of rainfall intensity due to Factor Z1 (Wallingford procedure) Rainfall for 30min storm with 5 yea Factor Z2 (Wallingford procedure) Rainfall for 30min storm with 2 yea Design rainfall intensity Maximum surface water runoff Catchment area Percentage of area that is imperm Maximum surface water runoff Calculate depth of flow using ite Minimum depth of flow Area of flow Perimeter of flow Hydraulic radius Check flow using Manning equation	yr return period minutes duration o global warming ar return period ar return period eable eration of Manni <i>Depth</i>	Other D = 30 min Period = 2 yr r = 0.271 M5_60min = 1 pcimate = 20 % Z1 = 0.76 M5_30min _i = 2 Z2 = 0.83 M2_30min = Z Imax = M2_30min Acatch = 365 min p = 80 % Qmax = Acatch × ng's formula x = 42 mm of flow is lesse A = (w + x / s) P = w + 2 × $\sqrt{(}$ R = A / P = 0.0 Qcheck = A × (R	8.0 mm 21 × M5_60min > 22 × M5_30min _i = nin / D = 27.4 mr 2 p × Imax = 2.2 I/s 5 than or equal to x x = 0.036 m ² x ² + (x / s) ²) = 1.0 036 m 2 / 1 m) ^{2/3} × S ^{1/2} >	< (1 + p _{climate}) = <i>i</i> = 13.7 mm n/hr fo <i>100 mm</i> so f 0 15 m < 1 m/s / n = 2.2	I6.4 mm iltration is effe	ective (cl.

X	Project Kilternan Vilage				Job Ref. 2104	
Roger Mullarkey & Associates Duncreevan	Section Swale 13				Sheet no./rev. 2	
Kilcock Co.Kildare	Calc. by RM	Date 22/05/2022	Chk'd by	Date	App'd by	Date

Freeboard

Minimum required swale width

 $d_{\text{free}} = \textbf{150} \text{ mm}$ $w_{\text{total,min}} = 2 \times (x + d_{\text{free}}) / s + w = \textbf{1.911} \text{ m}$

StormTech Calculations and Information

StormTech[®] Subsurface Stormwater Management

The advanced design of StormTech's chambers allows stormwater professionals to create more profitable, environmentally sound installations. Compared with other subsurface systems, StormTech's innovative chambers offer lower overall installed costs, superior design flexibility and enhanced long-term performance.

Superior Design Flexibility for Optimal Land Use

StormTech chambers are ideal for commercial, municipal and residential applications. One of the key advantages of the StormTech chamber system is design flexibility. StormTech chambers can be configured into beds or trenches, in centralized or decentralized layouts to fit on nearly any site.

L to R: SC-310 chamber and SC-740 chamber

Typical Cross Section Detail (not to scale)

Product Features and Benefits

The advanced features and innovative technology of StormTech chambers streamline installations while lowering overall installed costs. StormTech chambers offer these unique advantages:

- Lightweight, two people can install chambers quickly and easily, saving time and money
- Extensive product research & development and rigorous testing ensure long term reliability and performance
- Versatile product design accommodates a wide range of site constraints with cost-effective system designs
- The chamber length can be cut in 6.5" (165 mm) increments reducing waste and optimizing the use of available space
- Injection molded polypropylene ensures precise control of wall thickness and product consistency
- Isolator Row a patent pending technique to inexpensively enhance total suspended solids (TSS) removal and provide easy access for inspection and maintenance
- Corrugated Arch Design a proven geometry for structural integrity under H-20 live loads and deep burial loads, also provides high storage capacity

2 Call StormTech at 888.892.2694 for technical and product information or visit www.stormtech.com

Detention-Retention-Recharge

The StormTech SC-740 chamber optimizes storage volumes in relatively small footprints by providing 2.2 ft^3/ft^2 (0.67 m^3/m^2) (minimum) of storage. This can decrease excavation, backfill and associated costs. The StormTech SC-310 chamber is ideal for systems requiring low-rise and wide-span solutions. The chamber allows the storage of large volumes, 1.3 ft^3/ft^2 (0.4 m^3/m^2) (minimum), at minimum depths.

*This assumes a minimum of 6 inches (152 mm) of stone below, above and between chamber rows.

Advanced Structural Performance for Greater Long-Term Reliability

StormTech developed a state of the art chamber design through:

- · Collaboration with world-renowned experts of buried drainage structures to develop and evaluate the structural testing program and product design
- · Designing chambers to exceed AASHTO LRFD design specifications for HS-20 live loads and deep burial earth loads
- · Subjecting the chambers to rigorous full scale testing, under severe loading conditions to verify the AASHTO safety factors for live load and deep burial applications

to conduct research and consult with outside experts to meet customer needs for alternative backfill materials, designs for special loadings and other technical solutions.

Technical Assistance

to engineers, contractors and developers. Please contact one of our engineers or product managers to discuss your particular application. A wide variety of technical support material is available in print, electronic media or from our website at www.stormtech.com. For any questions, please call StormTech at 888-892-2694.

Fabricated End Caps

Contact StormTech for details.

20 Beaver Road, Suite 104 Wethersfield Connecticut 06109 860.529.8188 888.892.2694 fax 866.328.8401 www.stormtech.com

Printed on recycled paper

S030205-4

STORMTECH Stormy	vater Manager	nent System Desigr	i Tool	ver Jan18
PROJECT REF: KILTERNAN VILLAGE LOCATION: Storage Unit 1 DATE: May22 CREATED BY: RM SYSTEM PARAMETERS Required Total Storage Stormtech chamber model Filtration Permeable Geo or Impermeable Geo Number of Isolator Rows (IR) SITE PARAMETERS Stone Porosity Excavation Batter Angle (degrees) Stone Bobye Chambers Stone Bobye Chambers	1629 m ³ MC4500 - Filter geo 1 40% 80 - 0.6 m 0.45 m	Minimum Requirement 0.30 0.23	STORMTECH SYSTEM DETAIL Storm Tech Chamber Model Unit Unit Height Unit Height Min Cover Over System Max Cover Over Chamber (see StormTech for greater cover) Chamber Internal Storage Vol. Header Pipe Internal Storage Vol in Excavation	MC4500 2.54 m 1.23 m 1.525 m 0.3 m 2.1 m 3.01 m 0.0 m
In-between Row Spacing	0.45 m	0.23	STONE AND EXCAVATION DETAIL	
Additional Storage outside Excavation. E.g manholes, Header Pipe	10 m ³		Volume of Dig for System	2871 m ³
			Width at base	21.00 m
Is Header pipe required within excavation	No		Length at base	48.00 m
Orientation of Header Pipe	Partallel to IR		Length at top	50.97 m
Diameter of Header Pipe	0.6 m		Depth Of System	2.58 m
length of Header Pipe	0 m		Area of Dig at Base of System	1008 m ²
			Area of Dig at Top of System	1222 m
CHAMBER SYSTEM DIMENSIONS	Calculated Ado	pted	Void Ratio	57%
Number of Rows		7 ea	Stone Requirement - m3	2072 m
lumber of units per Row		37 ea	Stone Requirement - tonne	3398 tor
System Installed Storage Depth (effective storage depth)	2.575	m		
Fank overall installed Width at base	19.88	21 m		
Tank overall installed Length at Base	47.67	48 m		
Total Effective System Storage	1573.7 1	1638.1 m ³		

STORWIECH Stormy	vater Manage	ment System Design	1 1001	ver: Jan18
PROJECT REF: KII TERNAN VILLAGE				
LOCATION: Storage Unit 2				
DATE: May 22				
CREATED BY: RM				
SYSTEM PARAMETERS			STORMTECH SYSTEM DETAIL	
Required Total Storage	1110 m ³		StormTech Chamber Model	MC4500
itormtech chamber model	MC4500 -		Unit Width	2.54 m
iltration Permeable Geo or Impermeable Geo	Filter geo		Unit Length	1.23 m
lumber of Isolator Rows (IR)	1		Unit Height	1.525 m
			Min Cover Over System	0.3 m
SITE PARAMETERS			Max Cover Over Chamber (see StormTech for greater cover)	2.1 m
Stone Porosity	40%		Chamber Internal Storage Vol.	3.01 m
xcavation Batter Angle (degrees)	60	Minimum Requirement	Header Pipe Internal Storage Vol in Excavation	0.0
Stone Above Chambers	0.45 m	0.30		
Stone Below Chambers	0.3 m	0.23		
n-between Row Spacing	0.25 m	0 23	STONE AND EXCAVATION DETAIL	
Additional Storage outside Excavation. E.g manholes, Header Pipe	10 m ³		Volume of Dig for System	1879 m
			Width at base	11.50 m
HEADER PIPE			Width at top	14.13 m
s Header pipe required within excavation	No		Length at base	63.00 m
Drientation of Header Pipe	Parrallel to IR		Length at top	65.63 m
Diameter of Header Pipe	0.6 m		Depth Of System	2.28 m
ength of Header Pipe	0 m		Area of Dig at Base of System	725 m
			Area of Dig at Top of System	927 m
CHAMBER SYSTEM DIMENSIONS	Calculated Ad	lopted	Void Ratio	60%
lumber of Rows		4 ea	Stone Requirement - m3	1277 m
lumber of units per Row		49 ea	Stone Requirement - tonne	2094 to
System Installed Storage Depth (effective storage depth)	2.275	m		
Fank overall installed Width at base	11.51	11.5 m		
Fank overall installed Length at Base	62.43	63 m		
Total Effective System Storage	1115.9	1122.0 m ³		

STORMTECH Stormw	vater Managen	nent System Desigr	i Tool	ver, Jan få
PROJECT REF: KILTERNAN VILLAGE LOCATION: Storage Unit 3 DATE: May 22 CREATED BY: RM SYSTEM PARAMETERS Required Total Storage Stormtech chamber model Filtration Permeable Geo or Impermeable Geo Number of Isolator Rows (IR)	691 m ³ MC4500 - Filter geo		STORMTECH SYSTEM DETAIL StomTech Chamber Model Unit Width Unit Length Unit Heipht	MC4500 2.54 m 1.23 m 1.525 m
SITE PARAMETERS Stone Porosity	40%		Min Cover Over System Max Cover Over Chamber (see StormTech for greater cover) Chamber Internal Storage Vol.	0.3 m 2.1 m 3.01 m
Excavation Batter Angle (degrees) Stone Above Chambers Stone Below Chambers	60 • 0.45 m 0.3 m	Minimum Requirement 0.30 0.23	Header Pipe Internal Storage Vol in Excavation	0.0 m ³
In-between Row Spacing Additional Storage outside Excavation: E.g. manholes, Header Pine	0.25 m	0.23	STONE AND EXCAVATION DETAIL	1044
HEADER PIPE			Width at base Width at top	9.00 m 11.63 m
s Header pipe required within excavation	No		Length at base	43.00 m
Drientation of Header Pipe Diameter of Header Pipe	Parrallel to IR 0.6 m		Length at top Denth Of System	45.63 m
Length of Header Pipe	0 m		Area of Dig at Base of System	387 m
CHAMPED SYSTEM DIMENSIONS	Calculated Ado	stad	Area of Dig at Top of System	531 m
Number of Rows	Carculated Adv	3 ea	Stone Requirement - m3	736 m
Number of units per Row		33 ea	Stone Requirement - tonne	1207 to
System Installed Storage Depth (effective storage depth)	2.275	m		
Tank overall installed Width at base	8.72	9 m		
Tank overall installed Length at Base	42.75	43 m		
Total Effective System Storage	597.2	610.7 m ²		

PROJECT REF: KILTERNAN VILLAGE				
LOCATION: Storage Unit 4				
DATE: May'22				
CREATED BY: RM				
SYSTEM PARAMETERS			STORMTECH SYSTEM DETAIL	
Required Total Storage	399 m ³		StormTech Chamber Model	MC4500
tormtech chamber model	MC4500 -		Unit Width	2.54 m
iltration Permeable Geo or Impermeable Geo	Filter geo		Unit Length	1.23 m
lumber of Isolator Rows (IR)	1		Unit Height	1.525 m
			Min Cover Over System	0.3 m
ITE PARAMETERS			Max Cover Over Chamber (see StormTech for greater cover)	2.1 m
tone Porosity	40%		Chamber Internal Storage Vol.	3.01
xcavation Batter Angle (degrees)	60	Minimum Requirement	Header Pipe Internal Storage Vol in Excavation	0.0
tone Above Chambers	0.45 m	0.30		
itone Below Chambers	0.45 m	0.23		
n-between Row Spacing	0.25 m	0.23	STONE AND EXCAVATION DETAIL	
dditional Storage outside Excavation. E.g manholes, Header Pipe	10 m		Volume of Dig for System	735 m
			Width at base	10.00 m
EADER PIPE			Width at top	12.80 m
s Header pipe required within excavation	No		Length at base	25.00 m
Drientation of Header Pipe	Parrallel to IR		Length at top	27.80 m
liameter of Header Pipe	0.6 m		Depth Of System	2.43 m
ength of Header Pipe	0 m		Area of Dig at Base of System	250 m
			Area of Dig at Top of System	356 m
HAMBER SYSTEM DIMENSIONS	Calculated Adopt	ed	Void Ratio	55%
lumber of Rows		3 ea	Stone Requirement - m3	561 m
lumber of units per Row		18 ea	Stone Requirement - tonne	920 to
ystem Installed Storage Depth (effective storage depth)	2.425	m		-
ank overall installed Width at base	8.72	10 m		
ank overall installed Length at Base	24.3	25 m		
otal Effective System Storage	365.9 4	05.5 m ³		

STORMTECH Stormv	vater Manager	ment System Desigr	Tool	ver: Jantő
PROJECT REF: KILTERNAN VILLAGE LOCATION: Storage Unit 5 DATE: May 22 CREATED BY: RM SYSTEM PARAMETERS Required Total Storage Stormtech chamber model Filtration Permeable Geo or Impermeable Geo Number of Isolator Rows (IR)	116 m ³ MC4500 Filter geo 1		STORMTECH SYSTEM DETAIL StormTech Chamber Model Unit Width Unit Length Unit Height	MC4500 2.54 m 1.23 m 1.525 m
			Min Cover Over System	0.3 m
Stone Porosity	40%		Chamber Internal Storage Vol	301
Excavation Batter Angle (degrees)	60	Minimum Requirement	Header Pipe Internal Storage Vol in Excavation	0.0
Stone Above Chambers	0.3 m	0.30		
Stone Below Chambers	0.4 m	0.23		
n-between Row Spacing	0.25 m	0.23	STONE AND EXCAVATION DETAIL	
Additional Storage outside Excavation, E.g. manholes, Header Pipe	10 m ³		Volume of Dig for System	209
			Width at base	3.50
HEADER PIPE			Width at top	6.07 m
s Header pipe required within excavation	No		Length at base	18.00
Drientation of Header Pipe	Parrallel to IR		Length at top	20.57
Diameter of Header Pipe	0.6 m		Depth Of System	2.23
ength of Header Pipe	0 m		Area of Dig at Base of System	63
			Area of Dig at Top of System	125
CHAMBER SYSTEM DIMENSIONS	Calculated Add	opted	Void Ratio	56%
Number of Rows		1 ea	Stone Requirement - m3	164
lumber of units per Row		13 ea	Stone Requirement - tonne	269
System Installed Storage Depth (effective storage depth)	2.225	m		
Fank overall installed Width at base	3.14	3.5 m		
Tank overall installed Length at Base	18.15	18 m		
Total Effective System Storage	112.0	117.6 m ³		

DRO ISOT DES. MI TERMANIALI ACE				
PROJECT REF: KILTERNAN VILLAGE				
LOCATION: Storage Unit 0				
CREATED RY. DAA				
CREATED BT: RM				
SYSTEM PARAMETERS			STORMTECH SYSTEM DETAIL	
Required Total Storage	126 m		StormTech Chamber Model	MC4500
Stormtech chamber model	MC4500		Unit Width	2.54
Filtration Permeable Geo or Impermeable Geo	Filter geo		Unit Length	1.23
Number of Isolator Rows (IR)	1		Unit Height	1.525
			Min Cover Over System	0.3
SITE PARAMETERS			Max Cover Over Chamber (see StormTech for greater cover)	21
Stone Porosity	40%		Chamber Internal Storage Vol.	3.01
Excavation Batter Angle (degrees)	60 *	Minimum Requirement	Header Pipe Internal Storage Vol in Excavation	0.0
Stone Above Chambers	0.3 m	0.30		
Stone Below Chambers	0.45 m	0.23		
In-between Row Spacing	0.25 m	0.23	STONE AND EXCAVATION DETAIL	
Additional Storage outside Excavation. E.g manholes, Header Pipe	10 m		Volume of Dig for System	218
			Width at base	5.75
HEADER PIPE			Width at top	8,38
Is Header pipe required within excavation	No		Length at base	12.00
Orientation of Header Pipe	Parrallel to IR		Length at top	14.63
Diameter of Header Pipe	0.6 m		Depth Of System	2.28
Length of Header Pipe	0 m		Area of Dig at Base of System	69
			Area of Dig at Top of System	123
CHAMBER SYSTEM DIMENSIONS	Calculated A	dopted	Void Ratio	59%
Number of Rows		2 ea	Stone Requirement - m3	162
Number of units per Row		8 ea	Stone Requirement - tonne	265
System Installed Storage Depth (effective storage depth)	2.275	m		
Tank overall installed Width at base	5.93	5.75 m		
Tank overall installed Length at Base	12	12 m		
Total Effective System Storage	130.7	128.5		

OPW PFRA Map.No.2019/MAP/221/A

(Not to scale at A3)

UK SuDS.com Report

Print

HR Wallingford Working with water

Calculated by:	Roger Mullarkey
Site name:	Kilternan Village
Site location:	Kilternan

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details	
Latitude:	53.23799° N
Longitude:	6.19357° W
Reference:	1600766165
Date:	May 16 2022 12:42

Runoff estimation approach IH124

Site characteristics							
Total site area (ha): 9	al site area (ha): 9.92						
Methodology							
QBAR estimation method: Calculate from SPR and SAAR						SAAR	
SPR estimation metho	d:	Calci	culate from SOIL type				
Soil characteristics	Defau	ılt	Ed	dited			
SOIL type:	5			3			
HOST class:	1	N/A		N/A			
SPR/SPRHOST:	0.53			0.37			
Hydrological charac	istics	C	Default		Edited		
SAAR (mm):			1019		1	019	
Hydrological region:			12		1	12	
Growth curve factor 1 year:			0.85		0	0.85	
Growth curve factor 30 years:			2.13		2	.13	
Growth curve factor 100 years:			2.61		2	.61	
Growth curve factor 20	2.8	6	2	.86			

Notes

(1) Is Q_{BAR} < 2.0 I/s/ha?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	96.45	44.22
1 in 1 year (l/s):	81.98	37.59
1 in 30 years (l/s):	205.43	94.19
1 in 100 year (l/s):	251.73	115.41
1 in 200 years (l/s):	275.84	126.47

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

S/W Audit Report

Residential/Commercial Development at Kilternan Village, Kilternan, Dublin 18

Stage 1 Storm Water Audit 222181-PUNCH-XX-XX-RP-C-0001

May 2022

Document Control

Document Number: 222181-PUNCH-XX-XX-RP-C-0001

Status	Revision	Description	Date	Prepared	Checked	Approved
53	P01	Draft SWA	25-May-2022	J Fennell	MC Daly	MC Daly
AO	C01	SWA	30-May-2022	J Fennell	MC Daly	MC Daly

Report by:

Date: 30 May 2022

Jamie Fennell Design Engineer PUNCH Consulting Engineers

Checked by:

Date: 30 May 2022

Marie-Claire Daly Technical Director PUNCH Consulting Engineers

Approved by: _ Date: 30 May 2022

Marie-Claire Daly Technical Director PUNCH Consulting Engineers

Table of Contents

Document	Controli
Table of C	ontentsii
1 Int	roductionA
1.1	Purpose of ReportA
1.2	Site DetailsA
1.3	Report DetailsA
1.4	Documents ReviewedB
2 Sta	age 1 Audit FindingsC
2.1 (Procedu	General Requirements as per DLRCC County Development Plan 2022-2028 Stormwater Audit reC
2.2	DLRCC 2022 Development Plan - Stormwater Audit ProcedureF
2.3	Roads, Carparks & Landscaping H
2.3.1	Permeable Paving
2.3.2	Roads surfacing/Porous Asphalt
2.3.4	Bypass Interceptors - Specification H
2.3.5	Silt Trap Sump Chambers
2.3.6	CBR Values - Permeable Paving H
2.3.7	HydrobrakeI
2.3.8	Tree Root Structural Cell Systems/ Podium LandscapingI
2.3.9	Manhole SW Mh26I
2.4	Buildings/Residential Units I
2.4.1	Green Roof Co-ordination I
2.4.2	Rainwater Harvesting Tanks I
Appendix .	A Drawings and Documents Examined by the AuditorJ
Appendix	B Site Layout with Stage 1 Audit FindingsK
Appendix	C Storm Water Audit Feedback FormL

1 Introduction

1.1 Purpose of Report

This report presents a Stage 1 Storm Water Audit carried out for a proposed Strategic Housing Development (SHD) and associated infrastructure at Kilternan Village, Kilternan, Dublin 18.

1.2 Site Details

The site is located at Wayside, Enniskerry Road, Kilternan, Dublin 18 and is approximately 10.7 hectares in area. The proposed development comprises a mixed-use development consisting of 383 no. residential units and a neighbourhood centre incorporating c.2,512 sqm of creche, office, medical, retail and community use. The site is bordered by a fuel station and residential developments to the south, Enniskerry road to the West, a mix of commercial and residential to the north, and residential / greenfield sites to the east. The land generally falls from southwest to northeast, with the slope increasing to c.1/10 gradient on the eastern boundary. The proposed road levels within the area range from 135m (site entrance) to 143m (western boundary) OD Malin and the proposed dwellings on site range from 136m to 143m OD Malin.

1.3 Report Details

The audit was carried out by PUNCH Consulting Engineers between the dates of 23 May 2022 and 25 May 2022.

This Stage 1 Audit has been carried out in accordance with the Dún Laoghaire-Rathdown County Council (DLRCC) Stormwater Audit Procedure as per the Dún Laoghaire-Rathdown County Development Plan 2022-2028 Appendix 7. The auditor has examined only those issues within the design relating to storm water drainage implications of the scheme and has therefore not examined or verified the compliance of the design to any other criteria.

Appendix A contains copies of drawings examined by the auditor. The drawings in Appendix B correspond to the Stage 1 Audit findings outlined in Section 2 of this report. Appendix C contains the Surface Water Audit Feedback form.

All of the findings outlined in Section 2 of this report are considered by the auditor to require action in order to improve the stormwater credentials of the scheme.

1.4 Documents Reviewed

The following documents were reviewed as part of this audit;

- 1. RMA 2104-01 Road and Block Levels Sheet 1 D1
- 2. RMA 2104-02 Road and Block Levels Sheet 2 D1
- 3. RMA 2104-03 SW Drainage Sheet 1 D1
- 4. RMA 2104-04 SW Drainage Sheet 2 D1
- 5. RMA 2104-05 Drainage Connections D1
- 6. RMA 2104-08 Drainage Masterplan D1
- 7. RMA 2104-12 Exceedance Overflow Route D1
- 8. RMA 2104-13 Catchment Interception and Paved Areas D1
- 9. RMA 2104-14 SuDS Details Sheet 1 D1
- 10. RMA 2104-15 Attenuation Tank Details D1
- 11. RMA 2104-16 Road Details D1
- 12. RMA 2104-17 Manhole Details D1
- 13. RMA 2104-18 Water and Drainage Phasing D1
- 14. RMA 2104-23 SW Longitudinal Sections Sheet 1 D1
- 15. RMA 2104-24 SW Longitudinal Sections Sheet 2 D1
- 16. RMA 2104-25 SW Longitudinal Sections Sheet 3 D1
- 17. RMA 2104-26 SW Longitudinal Sections Sheet 4 D1

2 Stage 1 Audit Findings

2.1 General Requirements as per DLRCC County Development Plan 2022-2028 Stormwater Audit Procedure

Table 2-1 below outlines the result of a review of the scheme designer's proposals against the general requirements outlined in the DLRCC County Development Plan 2022-2028, Appendix 7, section 7.1.1.

	Requirements as per DLRCC 2022-2028 Development Plan	Addressed by Scheme Designer?
2.1.1	Climate Change All developments must apply a minimum factor of 1.2 to their drainage design and attenuation volumes to accommodate climate change.	Y
2.1.2	Urban Creep All developments must apply a factor of 1.1 to their drainage design and attenuation volumes to accommodate urban creep.	Y
2.1.3	Blockage Analysis Scheme Designers must submit details of the proposed surface water drainage system in the event of blockage or partial blockage of the system, commenting on any surcharging or flood risk that may be identified, particularly in relation to freeboard used in the simulation analysis. The proposal must include a drawing confirming that safe overland flow routes do not negatively impact properties both within and without the site. The overland flow route plan should identify drop kerbs or ramps required for channelling the flow and address low point areas in the site and detail how properties, both within the development and on adjacent lands, will be protected in the event of excessive overland flows.	Y
2.1.4	Utility Clash Check The Scheme Designer must undertake a utilities clash check to ensure all utilities' vertical and horizontal separation distances can be provided throughout the scheme. The Scheme Designer should demonstrate this with cross-sections at critical locations such as junctions, site thresholds and connection points to public utilities. Minimum separation distances must be in accordance with applicable Codes of Practice.	Scheme designer to confirm.
2.1.5	Private Drains Where an applicant's land is crossed by a private drain, the applicant is responsible for acquiring any rights or permissions necessary to connect to, or to increase the discharge into, or to build over, or divert, or to ensure thSS2.3e adequate capacity is not exceeded, or otherwise alter any private drains not in their exclusive ownership or control, and for ensuring their adequacy.	Scheme design to confirm connection is to a public sewer.
2.1.6	Pumping of Surface Water	N/A - pumping of surface water is not proposed

Table 2-1: General requirements for all developments greater than a single house

2.1.7	Sustainable Drainage Systems (SuDS): The proposal must demonstrate that they meet the requirements of the Greater Dublin Strategic Drainage Study (GDSDS) policies in relation to Sustainable Drainage Systems (SuDS). The design must incorporate SuDS measures appropriate to the scale of the proposed development such as green roofs, bioretention areas, permeable paving, rainwater harvesting, swales, etc. that minimise flows to the public drainage system and maximises local infiltration potential. The Scheme Designer should provide cross-sections and long-sections, and commentary that demonstrates all proposed SuDS measures have been designed in accordance with the relevant industry standards and the recommendations of The SuDS Manual (CIRIA C753)	Highlighted as part of this audit
2.1.8	Infiltration: The Scheme Designer should submit Site Investigation Report and results, including infiltration tests, and a plan showing the trial pits/soakaway test locations across the site. The report should address instances where groundwater, if any, was encountered during testing and its impact.	Y
2.1.9	Hardstanding/Parking Areas: All proposed parking and hardstanding areas should maximise local infiltration before discharge to the surface water drainage system, via a specifically designed permeable paving/porous asphalt system, in accordance with the requirements of Section 12.4.8 of the County Development Plan 2022-2028.	Highlighted as part of this audit
2.1.10	Basement: If basement carparking is provided, then all incidental run-off from the basement should be shown to drain to the foul system and not the surface water system	N/A - basement carparking not provided
2.1.11	Run-off Factors: Where Scheme Designers propose to use reduced run-off factors (or reduced impermeable contributing areas) for areas of their site that drain to SuDS measures these factors must be agreed with Municipal Services, preferable during the pre-planning process. It should be noted that standard surface water simulation software uses default Cv values of 0.84 for Winter and 0.75 for Summer. If the Scheme Designer proposes to use their own reduced run-off rates, then the default Cv values should be amended to a value of 1.0. Maintaining the default Cv values in conjunction with the Scheme Designers proposed rates reduces the run-off in simulations of rainfall events, giving inaccurate simulation results which may lead to under sizing of the drainage system and attenuation storage required.	Y
2.1.12	 Hydrological Parameters Scheme Designers must use site specific or local data in their Qbar, attenuation volume and surface water system design such as: SAAR Soil Type Rainfall Return Period Table (available from MET Eireann) Rainfall intensity Other hydrological parameters 	Y
2.1.13	Discharge Rate: Surface Water discharge from a development must be restricted to 2 l/s/ha or the calculated Qbar, whichever is greater. The Qbar should be calculated using the net area drained and not the gross area of the site (i.e. red line boundary). This discharge rate should be marked on the drainage drawing on the manhole in which the flow restricting device if located. The manhole in which the flow restricting device is located should not have a bypass pipe and, a penstock and silt trap should be provided. Flow restricting devices with an orifice of less than 50mm in diameter should be avoided. Where this is not possible then the Scheme Designer must submit a robust maintenance regime to ensure blockages are avoided, to the satisfaction of dlr. Scheme Designers are recommended to use the HR	Highlighted as part of this audit

	Wallingford UK SuDS Greenfield runoff rate estimation tool to estimate Qbar for their site: https://www.uksuds.com/drainage-calculation- tools/greenfield-runoff-rate-estimation	
2.1.14	Attenuation: If an attenuation system is proposed it should, where possible, not be located under the internal roads but in/under open space or parking areas. Attenuation systems must be inline. The preference is for attenuation systems that allow for infiltration and/or treatment within the site. The Scheme Designer should note that certain landscaping items, such as trees, may not be compatible with attenuation systems. The Scheme Designer must provide fully dimensioned plans and sections of the attenuation storage system. All relevant inlet and outlet levels, dimensioned clearances between other utilities, and actual depths of cover to the system should be provided. Details of the proposed inlet and outlet manholes and arrangements to facilitate draw down and maintenance should also be provided. Scheme Designers are recommended to use the HR Wallingford UK SuDS Surface water storage volume estimation tool to estimate the attenuation storage required for their site: https://www.uksuds.com/drainage-calculation-tools/surface-water-storage.	Y
2.1.15	Green Roof: The proposal must meet the requirements of Appendix 7.2: Green Roof Policy of the County Development Plan 2022-2028.	Y
2.1.16	Interception and Treatment: The Scheme Designer must demonstrate that required interception and/or treatment of surface water run-off is achieved in accordance with GDSDS policy. To be in compliance with GDSDS Volume 2 Section 6.3.3 Table 6.3 Criterion 1, interception of the first 5-10mm is required. If interception of first 5-10mm can't be achieved, then treatment of first 15mm is required.	Y
2.1.17	Maintenance: Scheme Designers must submit a post-construction maintenance specification and schedule for the drainage system, including SuDS measures and attenuation system to dlrcc for approval. This maintenance specification and schedule must be included in the Safety File.	To be addressed by the Scheme Designer at Construction Stage
2.1.18	New Connections: Prior to submission of the planning application, the Scheme Designer must obtain the sewer network records from DLRCC and assess if a new connection to the public sewer is technically feasible.	Y

2.2 DLRCC 2022 Development Plan - Stormwater Audit Procedure Table

Surface Cover Type	Area (m²)
Wetland or open water (semi-natural; not chlorinated) maintained or established on site.	-
Semi-natural vegetation (e.g. hedgerows, trees, woodland, species-rich grassland) maintained or established on site.	(30m² per tree) 13,870m²
Reuse of existing soils and seed source to develop vegetation cover	-
Standard trees planted in connected tree pits with a minimum soil volume equivalent to at least two thirds of the projected canopy area of the mature tree.	(20m ² per tree) 6,870m ²
Standard trees planted in pits with soil volumes less than two thirds of the projected canopy area of the mature tree.	7,800m ²
Intensive green roof or vegetation over structure. Substrate minimum settled depth of 150mm.	2,849 m ²
Non intensive Brown Roof (Biodiversity Roof). Substrate minimum settled depth of 150mm. Design will be site specific and developed by a suitably qualified ecologist.	
Extensive green roof with substrate of minimum settled depth of 80mm (or 60mm beneath vegetation blanket)	2,703 m ²
Extensive green roof of sedum mat or other lightweight systems	-
Green wall -modular system or climbers rooted in soil.	
Rain gardens and other vegetated sustainable drainage elements.	-
Flower-rich perennial planting.	6,072 m ²
Hedges (line of mature shrubs one or two shrubs wide).	(238+1,000m (Native Hedge))
	1,238m ²
Hedgerows or double hedgerow of native species (may have an associated ditch and bank)	
Groundcover planting.	(30% of flower rich perennials)
	2,024m ²
Amenity grassland entire area or sections managed for lesser mowing frequencies for pollinators (e.g. six week meadow)	
Amenity grassland (species-poor, regularly mown lawn).	17,689m ²

Table 2-2: Stormwater Audit Procedure Table - Completed by Scheme Designer

Water features (chlorinated) or unplanted detention basins.	
Permeable paving.	7,200 m ²
Sealed surfaces (e.g. concrete, asphalt, waterproofing, stone)	29,700 m ²

2.3 Roads, Carparks & Landscaping

2.3.1 Permeable Paving

Problem: Although permeable paving is located in some private driveways, it should be considered in greater quantity. Impermeable surfaces do not allow water to infiltrate to the ground.

Recommendation: Consider inclusion of permeable paving along footpaths, bicycle parking, plazas, and other pedestrian areas within the development.

2.3.2 Roads surfacing/Porous Asphalt

Problem: The proposed roads' surfacing has potential to increase the surface water runoff from the development.

Recommendation: It is noted that a significant portion of the roads and paved areas discharge via SuDs measures, with only a small area discharging directly to drains. Consider utilising porous asphalt or porous concrete surfacing throughout the development as a roads surfacing. This would allow surface water runoff from all areas subject to vehicular traffic to achieve an enhanced environmental quality level as well as a greater opportunity for infiltration.

2.3.3 Use of Detention Basins

Problem: Detention Basins have not been utilised within the development despite the large extent of landscaping to the south-west and centre of the site.

Recommendation: Considering the extent of landscaping, it may be feasible to adopt detention basins in these areas, which would promote greater amenity and biodiversity within the development and encourage infiltration of surface water. These also have the potential to reduce the size of the underground storage required.

2.3.4 Bypass Interceptors - Specification

Problem: Bypass Interceptor details have not been included in the documents provided.

Recommendation: Details of bypass interceptors are to be provided to ensure appropriate sizing.

2.3.5 Silt Trap Sump Chambers

Problem: Silt traps (or catch-pit manholes) should be included downstream of swales or filter drains to prevent silt build-up in the carrier drains and attenuation tank downstream of the SuDS elements.

Recommendation: Consider including silt traps (or catch-pit manholes) downstream of swales and filter drains.

2.3.6 CBR Values - Permeable Paving

Problem: Californian bearing ration (CBR) varies inversely with moisture content (as the latter increases the CBR value decreases). The equilibrium CBR value is the long-term value that occurs once the pavement is constructed and the moisture content of the subgrade soil comes in to equilibrium with the suction forces within the subgrade air spaces. Carrying out CBR tests will allow for appropriate permeable paving design including capping material if and where required. This capping is typically quite impermeable when compacted.

Recommendation: CBR tests to be performed on site at detailed design stage to allow for appropriate permeable paving design. These CBR tests are to be carried out in accordance with BS 1377-4:1990. Where Plate Bearing Tests provide very low results, which would typically warrant additional capping material as a result, consider incorporating an alternative strengthening system such layers of geogrid to ensure permeability is not compromised.

2.3.7 Hydrobrake

Problem: The proposed Hydrobrake orifice is not defined.

Recommendation: The orifice size of the Hydrobrake required is not defined. We recommend the use of a flow control device with an orifice no less than 50mm diameter for maintenance purposes and to ensure timely drain down time.

2.3.8 Tree Root Structural Cell Systems/ Podium Landscaping

Problem: There is potential to increase the amount of landscaping, including tree root structured cell systems, within the paving areas.

Recommendation: There are large open spaces that are proposed to be surfaced with paving. These areas could be broken up with planters, in line with the landscaping/SuDS proposals. The surrounding paving areas could be drained to these proposed planters.

2.3.9 Manhole SW Mh26

Problem: The manhole chamber and lid appear to clash with a raised table ramp.

Recommendation: Consider revising the drainage layout at detailed design stage so that all manholes take into the account the surrounding infrastructure and landscape proposals.

2.4 Buildings/Residential Units

2.4.1 Green Roof Co-ordination

Problem: It is unclear if the greenroof layout has been co-ordinated with M&E plant and access points to roof level.

Recommendation: Confirm co-ordination has been carried out.

2.4.2 Rainwater Harvesting Tanks

Problem: There is potential to install a rainwater harvesting facilities for the proposed duplex units. The rainwater collected can be used for toilet flushing within the new units and irrigation of the landscaping.

Recommendation: Consider incorporating rainwater harvesting tanks.

Appendix A Drawings and Documents Examined by the Auditor

CiThis drawing is Copyright and must only be used for the project not ed

8 10842 2001 5.0m 5.0m	Atom Atom Atom	REVIONE DESCRIPTION REVIONE DESCRIPTION REVIEWES TO THE ASSOCIATES CONSIGLER MULLIARKEY & ASSOCIATES CONSIGNED STORED AND A DESCRIPTION REVIEWED AND AND A DESCRIPTION REVIEWED AND A DESCRIPTION A DESCRIPTIO
50 0 101 101 101 101 101 101 101 1	1	
0 19801 1907/01 1 0 1980	2,002	s com 2000 e 1/120 Section 1h8 00
25.951 997/ET 1		S/W Longitudinal S/W Longitudinal S/W Longitudinal Verteal see 11:0 Hortental see 11:0
01000 1001 //FEET 1 100000 100000 100000	Euclinal Section SMh66/Tank 2 Means 1:00 Miscon 1:00	259 0 1/57
	S/W Longi SMh53 to verse	Pipe Length
05 00 0 0 110 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	52 IB 22 IB 20 ID	2250 0 (1/2) 121/12 121
9000 0 1/10 9000 0 1/10 9000 0 1/10		-ongitudinal Sec ank 2 to SMh7: vertical see 1:30
9000 0 17.84 98 000 98 000 99 000 90 000 900 9	50%	auoli enam Tawk 2 Te
N1.00 N2.00 N1.00	43.00 142.00 142.00 142.00 133.00 130.00 130.00 130.00 100 10000000000	Const: Lanels Programs Breact: Lang th Dige: Lang th Gradient &

E. The drawing is Copyright and rout only be used for the project rates

Appendix B Site Layout with Stage 1 Audit Findings

Appendix C Storm Water Audit Feedback Form

STORM WATER AUDIT FEEDBACK FORM

Accepted by Auditors Alternative Measures (Yes/No) Crossings have been checked and sections of same are visible on Neighbourhood Centre and the paving surrounding same. Refer to the attached Sk1 highlighting same. Noting also that the Village Green paving is also permeable surfacing. The paths through the parklands are gravel surfaces. Refer to the landscape architects drawing The surface area of permeable paving has been increased as described in 2.3.1 above. Permeable paved surfacing has been increased to the road west of the The S/W outfall pipe passes through lands in the applicants ownership, but where they are not in the applicants ownership letters of consent No.RMDA 1609-DwgNo.1 included with this response for further from the 3rd party landowner and a wayleave through same. Our Ref: 222181 [or reason problem not accepted] **Alternative Measures** (described) Proposed Residential Development at: Kilternan Village Dwg.No.'s 2104/23-30 Date Audit Completed: 25/05/2022 clarification. Recommended Accepted Measure (Yes/No) Residential Accepted (Yes/No) Problem YES YES YES YES -Audit Stage: Paragraph No. in Report Audit 2.1.4 2.1.5 2.3.1 2.3.2 Scheme: Area:

Alternative Measures Accepted by Auditors (Yes/No)	Yes					
Alternative Measures (described) [or reason problem not accepted]	The use of detention basin/s in the central tree belt is not feasible due to the limited space available outside the arborist specified tree root constraint zone and the prohibition of excavations within same - refer to Sk2 included in this response for illustration of same. The depth of the incoming drainage below the road surface doe not permit a open detention basin for reasons of safety or viability. The central tree belt is a strong bio-diversity benefit to the scheme and promotion of minimal intervention in this area is recommended by both the project landscape architect and arborist. The use of detention basins elsewhere are constrained virtue of the steep topography to the east. It is noted that the Village Green to the west of the site is at the head of the catchment and is therefore an inappropriate location.	The Bypass Interceptors proposed are in accordance with the manufacturers recommendations based on the calculated flowrates from the drainage model results. Refer to Sk3 included in this response submission for greater detail of same.	Silt trap chambers are to included on the downstream end of swales and filter drains as recommended.	CBR testing to be carried out as part of the at the detailed design for construction stage.	The Hydrobrake orifices are noted in the Microdrainage calculations and highlighted on Sk4 included in this response submission. The orifice diameters range from 72mm to 262mm	Both podium areas have a detailed landscaping plan which are compatible as Intensive Green Roofs. Refer to the attached landscape architect drawing No.RMDA 1609-Dwg.No.1.
Recommended Measure Accepted (Yes/No)	Q					
Problem Accepted (Yes/No)		YES	YES	YES	YES	YES
Paragraph No. in Audit Report	2.3.3	2.3.4	2.3.5	2.3.6	2.3.7	2.3.8

STORM WATER AUDIT FEEDBACK FORM
Σ
Ľ
0
<u> </u>
ð
A
B
0
ш
ш
F
δ
A
R
벁
۲
2
\leq
2
Ř
0
5
- /

Alternative Measures Accepted by Auditors (Yes/No)			Yes
Alternative Measures (described) [or reason problem not accepted]	SMh26 has been moved as noted. See Sk4 included in this response submission. Refer to Sk1 included in this response submission for greater detail of same.	The green roof is to be set back from roof over-runs/access points and there is no M+E plant/solar designed/intended for the roof areas.	Rainwater harvesting is not proposed for duplex units due to the applicants concerns relating to a lack of management and maintenance responsibility relating to same and the limited public space available to include such. Given that the residential units are to be fitted with water saving tap valves, eco-flush toilet systems, water saving appliances and as there are already c.170No.rainwater butts included in the design, it is proposed that there is more that sufficient amount of water saving features in the scheme.
Recommended Measure Accepted (Yes/No)			Q
Problem Accepted (Yes/No)	YES	YES	
Paragraph No. in Audit Report	2.3.9	2.4.1	2.4.2

Signed: R Hullenker

Please complete and return to the auditor

Auditor Signed Off:

6

Date:25/05/22

Design Team Project Manager

Date: 30/05/22

Sheet 3 of 3

Bypass NSB RANGE

APPLICATION

Bypass separators are used when it is considered an acceptable risk not to provide full treatment, for very high flows, and are used, for example, where the risk of a large spillage and heavy rainfall occurring at the same time is small, e.g.

- Surface car parks.
- Roadways.
- Lightly contaminated commercial areas.

PERFORMANCE

Klargester were one of the first UK manufacturers to have separators tested to EN 858-1. Klargester have now added the NSB bypass range to their portfolio of certified and tested models. The NSB number denotes the maximum flow at which the separator treats liquids. The British Standards Institute (BSI) tested the required range of Kingspan Klargester Bypass separators and certified their performance in relation to their flow and process performance assessing the effluent qualities to the requirements of EN 858-1. Klargester bypass separator designs follow the parameters determined during the testing of the required range of bypass separators.

Each bypass separator design includes the necessary volume requirements for:

- Oil separation capacity.
- Oil storage volume.
- Silt storage capacity.
- Coalescer.

Catchment Area "2"-Tank 6

The unit is designed to treat 10% of peak flow. The calculated drainage areas served by each separator are indicated according to the formula given by PPG3 NSB = 0.0018A(m2). Flows generated by higher rainfall rates will pass through part of the separator and bypass the main separation chamber.

Class I separators are designed to achieve a concentration of 5mg/litre of oil under standard test conditions.

SIZES AND SPECIFICATIONS

UNIT Nominal Size	FLOW (I/s)	PEAK ELOW RATE (I/s)	DRAINAGE AREA (m²)	STOR Capacity Silt	AGE ((litres) OIL	UNIT LENGTH (mm)	UNIT DIA. (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT	STANDARD FALL ACROSS (mm)	MIN. INLET INVERT (mm)	STANDARD Pipework Dia.
NSBP003	3	30	1670	300	45	1700	1350	600	1420	1320	100	500	160
NSBP004	4.5	45	2500	450	60	1700	1350	600	1420	1320	100	500	160
NSBP006	6	60	3335	600	90	1700	1350	600	1420	1320	100	500	160
NSBE010	10	100	5560	1000	150	2069	1220	750	1450	1350	100	700	315
NSBE015	15	150	8335	1500	225	2947	1220	750	1450	1350	100	700	315
NSBE020	20	200	11111	2000	300	3893	1220	750	1450	1350	100	700	375
NSBE025	25	250	13890	2500	375	3575	1420	750	1680	1580	100	700	375
NSBE030	30	300	16670	3000	450	4265	1420	750	1680	1580	100	700	450
NSBE040	40	400	22222	4000	600	3230	1920	600	2185	2035	150	1000	500
NSBE050	50	500	27778	5000	750	3960	1920	600	2185	2035	150	1000	600
NSBE075	75	750	41667	7500	1125	5841	1920	600	2235	2035	200	950	675
N 65100	100	1000	55556	10000	1500	7661	1920	600	2235	2035	200	950	750
NSBE125	125	1250	69444	12500	1875	9548	1920	600	2235	2035	200	950	750

Catchment Area "A"-Tank 1

Rotomoulded champer construction _____ Chamber construction

is needed: The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the

- separator and that the flow is not pumped.
- The drain invert inlet depth.
- Pipework type, size and orientation.

- FEATURES
- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Oil alarm system available (required by EN 858-1 and PPG3).

To specify a nominal size bypass separator, the following information

- Extension access shafts for deep inverts.
- Maintenance from ground level.
- GRP or rotomoulded construction (subject to model).

SK3 - Bypass Inteceptors

^{*} Some units have more than one access shaft - diameter of largest shown.

Roger Mullarkey & Associates			Page 8
Duncreevan	Kilternan Vill	age	
Kilcock	Stage 3 Plan	ning D1	and the second second
Co. Kildare, Ireland	All Critical St	corms	Micro
Date 22/05/2022 20:44	Designed by	R.M.	Drainage
File Kilternan Planning D1 May 22.MD	Checked by		bioinage
Innovyze	Network 202	0.1.3	
Innovyze Hydro-Brak Minimum Ou Suggeste Control Points Design Point (Calculated) Flush-Flo™ The hydrological calculations	Network 2024 Online Controls f Online Controls f Unit Reference Design Head (m) Design Head (m) Design Flow (1/s) Flush-Flo*** Objective Application Sump Available Diameter (mm) Invert Level (m) tlet Pipe Diameter (mm) d Manhole Diameter (mm) Lead (m) Flow (1/s) 1.450 4.0 0.385 3.8 Mead	D.1.3 For Storm DS/PN: S9.003, Volume (m MD-SHE-0088-4000-14) Cala Minimise upstream Control Points Kick-F1 an Flow over Head Ran	A ³): 8.7 50-4000 1.450 4.0 culated storage Surface Yes 139.920 150 1200 Head (m) Flow (1/s) ∞ 0.786 3.0 oge - 3.4 tionship for the Hydro-
The hydrological calculations Brake® Optimum as specified. Optimum® be utilised then the 0.100 2.7 0.200 3.5 0.300 3.7 0.400 3.8 0.500 3.7 0.600 3.6 0.800 3.0 1.000 3.4	s have been based on the Should another type of ese storage routing calc Depth (m) Flow (1/s) 1.200 3.7 1.400 3.9 1.600 4.2 1.800 4.4 2.000 4.6 2.200 4.9 2.400 5.1 2.600 5.2	Head/Discharge relations control device other culations will be involved oth (m) Flow (1/s) Jobs 3.000 5.6 3.500 6.0 4.000 6.4 4.500 5.000 7.1 5.500 6.000 7.8 6.500	tionship for the Hydro- r than a Hydro-Brake alidated Ppth (m) Flow (1/s) 7.000 8.4 7.500 8.6 8.000 8.9 8.500 9.2 9.000 9.4 9.500 9.7
<u>Hydro-Brake</u>	e® Optimum Manhole: S48, D	<u>S/PN: S6.005, Volume (m</u>	³): 17.9
Minimum Ou Suggeste	Unit Reference Design Head (m) Design Flow (l/s) Flush-Flo TM Objective Application Sump Available Diameter (mm) Invert Level (m) tlet Pipe Diameter (mm) d Manhole Diameter (mm)	MD-SHE-0207-2500-18 Cal Minimise upstream	50-2500 1.850 25.0 culated storage Surface Yes 207 138.708 225 1800
Control Points	Head (m) Flow (l/s)	Control Points	Head (m) Flow (l/s)
Design Point (Calculated) Flush-Flo™	1.850 25.0 0.546 25.0 Mea	Kick-Fl In Flow over Head Ran	o® 1.178 20.2 ge - 21.7
The hydrological calculations Brake® Optimum as specified. Optimum® be utilised then the	s have been based on the Should another type of ese storage routing calc SK4/	Head/Discharge rela control device othe sulations will be inv	tionship for the Hydro- r than a Hydro-Brake alidated Diameters

Roger Mullarkey & Ass	ociates						Page 9
Duncreevan			Kilternar	n Village			
Kilcock			Stage 31	Planning D1			No.
Co Kildare Ireland			All Critic	al Storms			Minne
Date 22/05/2022 20:4	4		Designed	L by R M			
File Kilternan Planning	+ x D1 May 22 MI	אר	Checked	by K.M.			Drainage
	3 DT May 22.M		Notwork	2020 1 2			
IIIIOvyze			Network	2020.1.5			
	<u>Hydro-Bra</u>	ke® Optimum A	Manhole: S4	8, DS/PN: 56	.005, Volume	(m³): 17.9	
Depth (m)	Flow (l/s)	Depth (m) F	low (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	7.1	1.200	20.3	3.000	31.5	7.000	47.4
0.200	19.8	1.400	21.9	3.500	33.9	7.500	49.0
0.300	23.5	1.600	23.3	4.000	36.2	8.000	50.6
0.400	24.6	1.800	24.7	4.500	38.3	8.500	52.1
0.500	25.0	2.000	25.9	5.000	40.3	9.000	53.5
0.600	25.0	2.200	27.1	5.500	42.2	9.500	55.0
0.800	24.4	2.400	28.3	6.000	44.0		
1.000	23.0	2.600	29.4	6.500	45.7		
	<u>Hydro-Bra</u>	ke® Optimum <i>N</i>	Manhole: S5	7, DS/PN: S1	2.004, Volume	e (m³): 5.8	
		Un	it Refere	nce MD-SHE	-0058-2000-	1850-2000	
		Des	ign Head	(m)		1.850	
		Desig	n Flow (1	./s)		2.0	
			Flush-F	'lo™	. C	alculated	
			Object	ive Minim	ise upstrea	m storage	
			Applicat	ion		Surface	
		Su	mp Availa	ble		Yes	
		_ D	iameter (mm)		58	
		Inve	ert Level	(m)		139.532	-
	Minimum (Outlet Pipe D)iameter (mm)		1200	J
Control	Beinte	used (m) E	lam (1/a)	nun)	nol Dointo	Head	(m) Eleve (1/e)
Control	Points	Head (m) F.		Cont	rol Points	неас	(m) FIOW (1/S)
Design Point	(Calculated)) 1.850 ™ 0.255	2.0	Mean Flow	Kick	-rilo® 0. Range	- 1.1
	FIGSH FIG	0.200	1.1	Heall Flow	over nead i	lange	1.5
The hydrological	calculatio	ns have been	based on	the Head/I	Discharge re	elationship	o for the Hydro-
Brake® Optimum a	s specified	. Should and	other type	e of contro	ol device of	ther than a	a Hydro-Brake
Optimum® be util	ised then t	hese storage	routing (calculatior	ns will be :	invalidated	1
Depth (m)	Flow (l/s)	Depth (m) F	low (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100	1.2	1.200	1.6	3.000	2.5	7.000	3.7
0.200	1 4	1.400	1.8	3.500	2.5	7.500	3.8
0.200	1 /	1.600	1 9	4,000	2.7	8,000	3.9
0.300	1 2	1 800	2 0	4.500	2.0	8 500	Δ 1
0.400	1 0	2 000	2.0	5 000	3.0	9,000	4.2
0.500	1 2	2 200	2.1	5 500	2.2	9.000	4.2
0.000	1 /	2.200	2.2	6.000	2.2	9.500	4.5
1.000	1.5	2.600	2.3	6.500	3.4		
	Hydro-Brai	(e® Optimum M	anhole: \$7	DS/PN· \$12	012 Volume	(m ³)· 26 0	
	<u>nyaro-brar</u>		annote: 5/1	.,		<u>, j. 20.0</u>	
		_Un	it Refere	nce MD-SHE	-0072-3000-	1850-3000	
		Des	ign Head	(m)		1.850	

Design Flow (1/s) 3.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 72 Diameter (mm) 134.897 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 100 1200 Suggested Manhole Diameter (mm)

SK4/2 - Orifice Diameters

Roger Mullarkey & Associates		Page 10
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning D1	
Co. Kildare, Ireland	All Critical Storms	Mirco
Date 22/05/2022 20:44	Designed by R.M.	Drainago
File Kilternan Planning D1 May 22.MDX	Checked by	Diamade
Innovyze	Network 2020.1.3	

Hydro-Brake® Optimum Manhole: S72, DS/PN: S12.012, Volume (m3): 26.0

Control	Points	Head (m)	Flow (l/s)	Control P	oints	Head (m)	Flow (l/s)
Design Point	(Calculated)	1.850	3.0		Kick-Flo®	0.637	1.8
	Flush-Flo™	0.312	2.3	Mean Flow over	Head Range	-	2.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Dept	h (m)	Flow	(l/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)
					~ ~ ~							_			
	0.100)	1.9	1	.200		2.5	3	.000		3.7	1.	.000		5.6
	0.200)	2.2	1.	.400		2.6	3	.500		4.0	7.	.500		5.8
	0.300)	2.3	1	.600		2.8	4	.000		4.3	8.	.000		5.9
	0.400)	2.3	1	.800		3.0	4	.500		4.5	8.	.500		6.1
	0.500)	2.2	2.	.000		3.1	5	.000		4.8	9.	.000		6.3
	0.600)	2.0	2.	.200		3.2	5	.500		5.0	9.	.500		6.4
	0.800)	2.0	2.	.400		3.4	6	.000		5.2				
	1.000)	2.3	2.	.600		3.5	6	.500		5.4				

Hydro-Brake® Optimum Manhole: S77, DS/PN: S1.012, Volume (m³): 21.9

Unit Reference	MD-SHE-0263-4240-1850-4240
Design Head (m)	1.850
Design Flow (l/s)	42.4
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	263
Invert Level (m)	131.650
Minimum Outlet Pipe Diameter (mm)	300
Suggested Manhole Diameter (mm)	2100

Control	Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point	(Calculated)	1.850	42.2	Kick-Flo®	1.233	34.8
	Flush-Flo™	0.564	42.2	Mean Flow over Head Range	-	36.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)
0	100		8.4	1	200		35.9	3	000		53.3	7	000		80.4
0	.200		27.1	1.	400		37.0	3	.500		57.5	7.	500		83.2
0	.300		39.5	1.	600		39.4	4	.000		61.3	8.	000		85.9
0	.400		41.4	1.	800		41.7	4	.500		64.9	8.	500		88.4
0	.500		42.1	2.	000		43.9	5	.000		68.3	9.	000		90.9
0	.600		42.2	2.	200		45.9	5	.500		71.5	9.	500		93.4
0	.800		41.4	2.	400		47.9	6	.000		74.6				
1	.000		39.8	2.	600		49.8	6	.500		77.6				

Hydro-Brake® Optimum Manhole: S89, DS/PN: S17.004, Volume (m³): 5.5

Unit Reference MD-SHE-0055-1800-1850-1800 Design Head (m) 1.850 Design Flow (1/s) 1.8

ifice Diameters

©198

Roger Mullarkey & Associates		Page 11
Duncreevan	Kilternan Village	
Kilcock	Stage 3 Planning D1	1 miles 1 miles
Co. Kildare, Ireland	All Critical Storms	Mirro
Date 22/05/2022 20:44	Designed by R.M.	Drainago
File Kilternan Planning D1 May 22.MDX	Checked by	Digitige
Innovyze	Network 2020.1.3	

Hydro-Brake® Optimum Manhole: S89, DS/PN: S17.004, Volume (m3): 5.5

Flush-Flo™		Calcu	ulated
Objective	Minimise	upstream st	torage
Application		Si	urface
Sump Available			Yes
Diameter (mm)			55
Invert Level (m)		1:	31.350
Minimum Outlet Pipe Diameter (mm)			75
Suggested Manhole Diameter (mm)			1200

Control	Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point	(Calculated)	1.850	1.8	Kick-Flo®	0.489	1.0
	Flush-Flo™	0.238	1.2	Mean Flow over Head Range	-	1.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(l/s)	Depth (m) Fl	.ow (1/s)	Depth (m) Flow	(l/s)	Depth (m)	Flow (l/s)
0.100	1.1	1.200	1.5	3.000	2.2	7.000	3.3
0.200	1.2	1.400	1.6	3.500	2.4	7.500	3.4
0.300	1.2	1.600	1.7	4.000	2.6	8.000	3.5
0.400	1.1	1.800	1.8	4.500	2.7	8.500	3.6
0.500	1.0	2.000	1.9	5.000	2.8	9.000	3.7
0.600	1.1	2.200	1.9	5.500	3.0	9.500	3.8
0.800	1.2	2.400	2.0	6.000	3.1		
1.000	1.4	2.600	2.1	6.500	3.2		

SK4/4 - Orifice Diameters

All Stormwater Audits must include the following table completed by the scheme designers.

Surface Cover Type	Area (m²)
Wetland or open water (semi-natural; not chlorinated) maintained or established on site.	
Semi-natural vegetation (e.g. trees, woodland, species-rich grassland) maintained or established on site. *30sqm per tree	13,870sqm
Standard trees planted in connected tree pits with a minimum soil volume equivalent to at least two thirds of the projected canopy area of the mature tree. *20sqm per tree	6,870sqm
Standard trees planted in pits with soil volumes less than two thirds of the projected canopy area of the mature tree.	7,800sqm
Intensive green roof or vegetation over structure. Substrate minimum settled depth of 150mm.	2,849sqm
Extensive green roof with substrate of minimum settled depth of 80mm (or 60mm beneath vegetation blanket)	2,703sqm
Extensive green roof of sedum mat or other lightweight systems	
Green wall -modular system or climbers rooted in soil.	
Rain gardens and other vegetated sustainable drainage elements.	
Flower-rich perennial planting.	6,072sqm
Hedges (line of mature shrubs one or two shrubs wide). *238+1,000m (Native Hedge)	1,238sqm
Groundcover planting. *30% of flower rich perennuals	2,024sqm
Amenity grassland (species-poor, regularly mown lawn).	17,689sqm
Water features (chlorinated) or unplanted detention basins.	
Permeable paving.	7,200sqm
Sealed surfaces (e.g. concrete, asphalt, waterproofing, stone), *includes 22,900sqm to SuDS features	29,700sqm

Any assumptions (e.g. how expected tree canopy has been calculated) and which features (e.g. the type of seminatural habitat) have been included should be noted.

Appendix 12.7

Geological Survey of Ireland & Teagasc Datasets

0 0.3 0.6km

K . 0.04		
n: 0.04 May 0.00		
Mig: 0.09 Ce: 0.31		
Ca: 0.51		
Horizon 3: 40 - 60 cm		
Humose: No	Stones (% total): Abundant (40-80 %)	HCl reaction: -
Matrix colour (moist): 10YR46	Stones details: Boulders (20-60 cm)	Packing density: Medium
Texture: Coarse loamy	Stickiness: -	Plasticity: -
TOTAL %	PARTICLE SIZE %	
Nitrogen: 0.18	Sand: 47%	Textural Class (USDA): Loam
Carbon: 2.77	Silt: 33%	Bulk density:
Organic carbon: 1.49	Clay: 20%	pH: 4.55
Loss on ignition: -		
EXCHANGEABLE COMPLEX		
Exchangeable Bases (cmol kg ⁻¹)	CEC (cmol kg ⁻¹): 6.78	
Na: 0.12	Base saturation: 7%	
K: 0.04		
Mg: 0.07		
Ca: 0.22		
Horizon 4: 60 cm		
Humose: No	Stones (% total): - (-)	HCL reaction: -
Matrix colour (moist):	Stones details: - (-)	Packing density: -
Texture:	Stickiness: -	Plasticity: -
		-
TOTAL %	PARTICLE SIZE %	
Nitrogen: -	Sand: -%	Textural Class (USDA): -
Carbon: -	Silt: -%	Bulk density: -
Organic carbon: -	Clay: -%	pH:
Loss on ignition: -	-	
EXCHANGEABLE COMPLEX		
Exchangeable Bases (cmol kg ⁻¹)	CEC (cmol kg ⁻¹): -	
Na: -	Base saturation: -%	
К: -		
Mg: -		
Ca: -		

Horizon 1:0-4 cm

,				
Humose:	Yes	Stones (% total): None (0 %)	HCL reaction: -	
Matrix color	ur (moist): 75YR32	Stones details: - (-)	Packing density: L	ow
Texture:	-	Stickiness: -	Plasticity: -	
TOTAL %		PARTICLE SIZE %		
Nitrogen:	2.09	Sand: -%	Textural Class (US	DA):
Carbon:	40.67	Silt: -%	Bulk density:	-
Organic car	'bon: 40.67	Clay: -%	pH:	4.16
Loss on ign	nition: 85.68			
EXCHANGE	ABLE COMPLEX			
Exchangeal	ble Bases (cmol kg ⁻¹)	CEC (cmol kg ⁻¹): ^{28.99}		
Na:	0.08	Base saturation: 92%		
K:	3.29			
Mg:	6.70			
Ca:	16.60			
Horizon 2:	4 - 20 cm			
Humose:	Yes	Stones (% total): Common (5-15 %)	HCL reaction: -	
Matrix as las		Otomore detailers Madium amusic (Course O and)	Desidence describers I	

Humose:	tes	Stones (% total	: Common (5-15 %)	HCL reaction: -	
Matrix colour (mo	bist): 10YR21	Stones details:	Medium gravels (6mm -2 cm)	Packing density: Low	
Texture:	-	Stickiness:	-	Plasticity: -	
TOTAL %		PARTICLE SIZE	%		
Nitrogen:	1.40	Sand: -%		Textural Class (USDA):
Carbon:	28.77	Silt: -%		Bulk density:	-
Organic carbon:	28.77	Clay: -%		pH:	3.71
Loss on ignition:	51.52				

EXCHANGEABLE COMPLEX

4/4/2018

Representative Profile Description

Exchangea	able Bases (cmol kg ⁻¹)	CEC (cmol kg ⁻¹): 22.73	
Na:	0.08	Base saturation: 44%	
K:	1.65		
Mg:	3.78		
Ca:	4.43		
Horizon 3:	: 20 - 999 cm		
Humose:	No	Stones (% total): Abundant (40-80 %)	HCL reaction: -
Matrix colo	our (moist): 10YR43	Stones details: Medium gravels (6mm -2 cm)	Packing density: High
Texture:	Coarse loamy	Stickiness: -	Plasticity: -
TOTAL %		PARTICLE SIZE %	
Nitrogen:	0.07	Sand: 68%	Textural Class (USDA): Sandy Loam
Carbon:	1.39	Silt: 26%	Bulk density: -
Organic ca	rbon: 1.12	Clay: 6%	pH: 3.80
Loss on ig	nition: -		
EXCHANG	EABLE COMPLEX		
Exchangea	able Bases (cmol kg ⁻¹)	CEC (cmol kg ⁻¹): 2.95	
Na:	0.08	Base saturation: 11%	
K:	0.06		
Mg:	0.08		
-	0.00		

Contact us | Terms | Teagasc | Cranfield University

Legend	SOUTH	Centre Coordinates (ITM) 720,574 722,352 5/29/2018, 6:24:49 PM ance Survey Iteland Licence No: EN 0047217 idnance Survey Iteland/Government of Iteland oological Survey Iteland/Government of Iteland
ta	GLENAMUCK SOUTH	0.0175 0.035 0.07 mi Map 0.0175 0.035 0.07 mi Map 0.0275 0.055 0.11 km Odd he prior written permission of Copyright holders.
Geological Survey Sate Menalicity Marcel Clans	GLENAMUCKNORTH KILTIERNAN DOMAIN	P: 1:2,500 Iogical Survey Ireland $w = 0$ a user generation of the used or reproduced for commercial purposes without the the area of the generic transmission and the generic set of the generic that another on the set current. or otherwise re-

Legend Groundwater Wells and Springs		
		Map Centras Coordinates ((TM) 720,714 722,403 5/29/2018, 6:22:04 PM Ordnance Survey Ireland Loonce No. EN 0047216 ordnance Survey Ireland/Government of Ireland © Geological Survey Ireland/Government of Ireland
lic Data	TH	-L -L -1 km -11 km -r koties.
ical Survey Ireland Pub	GLET	W W E 0 0.0175 0.035 (W W W E 0 0.0275 0.055 0. Nimerclel purposes without the prior written permission of Copyright take current or otherwise mit alle
Cological Survey Subtrantionenticitat Subtrantionenticitation Subtrantionenticitation Subtrantionenticitation Subtrantionenticitation Subtrantionenticitation Subtrantionenticitation		Scale: 1:2,500 Geological Survey Ireland PSI Licence his map and is data may not be used or reproduced for co his map is a user generated static oright from an internet.

Appendix 12.8

Ground Investigations Soakaway Reports

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

Ground Investigations Ireland

Kilternan Village

Ground Investigation Report

DOCUMENT CONTROL SHEET

Project Title	Kilternan Village		
Engineer	Roger Mullarkey & Associates		
Client	Deloitte		
Project No	7121-09-17		
Document Title	Ground Investigation Report		

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
A	Final	N Sheehan	F McNamara	F McNamara	Dublin	24 October 2017

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

CONTENTS

1.0 Preamble	3
2.0 Overview	3
2.1. Background	3
2.2. Purpose and Scope	3
3.0 Subsurface Exploration	3
3.1. General	3
3.2. Trial Pits	3
3.3. Soakaway Testing	4
4.0 Ground Conditions	4
4.1. General	4
4.2. Groundwater	4
5.0 Recommendations & Conclusions	5
5.1. General	5
5.2. Soakaway Design	5

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Trial Pit Records
Appendix 3	Soakaway Records
Appendix 4	Trial Pit Photographs

1.0 Preamble

On the instructions of Roger Mullarkey & Associates Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd on 3rd October 2017 at the site of a proposed residential housing development in Kilternan Village, Kilternan, Dublin 18.

2.0 Overview

2.1. Background

It is proposed to construct a new residential housing development with associated services, access roads and car parking at the proposed site. The site is currently an open greenfield with playing pitches thereon situated in the centre of Kilternan Village. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 3 No. Trial Pits to a maximum depth of 2.00m BGL
- Carry out 3 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a 3.50 Tonne tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by

a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in each trial pit at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Topsoil
- Cohesive Deposits

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.20m BGL.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Topsoil and were described typically as *light brown sandy slightly gravelly CLAY* overlying a *light yellowish brown sandy slightly gravelly SILT (recovered as possible weathered GRANITE)*. The strength of the cohesive deposits typically increased with depth and was firm and firm to stiff below 1.50m BGL in the majority of the exploratory holes.

4.2. Groundwater

No groundwater was noted during the investigation however we would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction and other factors.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Soakaway Design

Infiltration rates of 9.325 x 10^{-6} , 5.702 x 10^{-6} and 5.007 x 10^{-6} m/s respectively were calculated for the soakaway locations S04, S05 and S06.

APPENDIX 1 - Site Location Plan

APPENDIX 2 - Trial Pit Records

REALENS	Grou	nd Inve	estigations li www.gii.ie	Site Kilternan Village, Dublin 18				
Machine : 3.5T Tracked Excavator Method : Trial Pit		Dimensions 2.50 x 0.70 x 2.00 L x W X D			Level (mOD)	Client		Job Number 7121-09-17
		Location (72057	Handheld GPS) 70 E 722565 N	Dates 03	/10/2017)/2017 Engineer Roger Mullarkey & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Fedend Kate
						TOPSOIL Firm light brown sandy slig Light yellowish brown sand (recovered as possible we Complete at 2.00m	Jhtly gravelly CLAY dy slightly gravelly SILT athered GRANITE)	
Plan .					F	Remarks No groundwater encountere Trial pit stable	d	
						Trial pit used for soakaway f	est, backfilled on completio	n of test
					s	Scale (approx)	Logged By	Figure No.

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

RELAND	Ground Investigations Ireland Ltd					Site Kilternan Village, Dublin 18				
Machine : 3.5T Tracked Excavator Method : Trial Pit		Dimensions 2.50 x 0.70 x 1.90 L x W X D			Level (mOD)	Client		Job Number 7121-09-17		
		Location 7206	(Handheld GPS) 87 E 722490 N	Dates 03	Dates 03/10/2017 Engineer Roger Mullarkey & Associates		Sheet 1/1			
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend کې Abr		
						TOPSOIL Firm light brown sandy slig Light yellowish brown sand (recovered as possible we Light yellowish brown med Complete at 1.90m	dy slightly gravelly SILT athered GRANITE)			
						No groundwater encountere Trial pit stable	d	an of tost		
		·			•••	marph used for soakaway i	est, saterined on completit	ni oi toat		
					•••					
	· ·	•	· · ·	•	· ·					
					s	Scale (approx)	Logged By	Figure No.		
						1:25	N. Sheehan	7121-09-17		

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

RELAND	Ground Investigations Ireland Ltd					Site Kilternan Village, Dublin 1	Trial Pit Number S 06	
Machine : 3.5T Tracked Excavator Method : Trial Pit		Dimensio 2.50 x 0.7 L x W X C	ns '0 x 1.90)	Ground	Level (mOD)	Client		Job Number 7121-09-17
	Location (Handheld GPS) Da 720668 E 722394 N		Dates 03	8/10/2017	Engineer Roger Mullarkey & Associates		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Kater V
					(0.20) 0.20 (1.40) (1.40) (1.40) (0.20) (0.20) (0.10) 1.90	TOPSOIL Firm to stiff light brown sam Light yellowish brown sam (recovered as possible we Light yellowish brown med Complete at 1.90m	dy slightly gravelly CLAY dy slightly gravelly SILT athered GRANITE)	
Plan .					'	Remarks	d	
						Trial pit stable Trial pit used for soakaway t	est, backfilled on completio	on of test
· ·	· ·		· · ·		 			
						taalo (annrass)	Longod Dr.	Figure No.
					5	1:25	N. Sheehan	7121-09-17

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

APPENDIX 3 - Soakaway Records

S 04 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.50m x 0.70m x 2.00m (L x W x D)

Date	Time	Wate (m	r level bgl)		
03/10/2017	0	-0.620			
03/10/2017	15	-0.790	1		
03/10/2017	30	-0.870	1		
03/10/2017	60	-1.030	1		
03/10/2017	90	-1.120	1		
03/10/2017	120	-1.210			
03/10/2017	150	-1.270]		
03/10/2017	180	-1.320			
03/10/2017	240	-1.410			
Start depth 0.62	Depth of Pit 2.000		Diff 1.380	75% full 0.965	25%full 1.655
Length of pit (m) 2.500	Width of pit (m) 0.700			75-25Ht (m) 0.690	Vp75-25 (m3) 1.21
Tp75-25 (from graph) (s)		21000		50% Eff Depth 0 690	ap50 (m2) 6 166
f =	9.325E-06	m/s		0.000	0.100

S 05 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.50m x 0.70m x 1.90m (L x W x D)

Date	Time	Wate (m	r level bgl)		
03/10/2017	0	-0.620	1		
03/10/2017	15	-0.680	1		
03/10/2017	30	-0.710]		
03/10/2017	60	-0.770			
03/10/2017	90	-0.830			
03/10/2017	120	-0.860			
03/10/2017	180	-0.930			
03/10/2017	240	-0.990			
03/10/2017	300	-1.060			
Start depth 0.62	Depth of Pit 1.900		Diff 1.280	75% full 0.94	25%full 1.58
Length of pit (m) 2.500	Width of pit (m) 0.700			75-25Ht (m) 0.640	Vp75-25 (m3) 1.12
Tp75-25 (from graph) (s)		33600		50% Eff Depth 0 640	ap50 (m2) 5 846
f =	5.702E-06	m/s		0.010	0.010

S 06 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.50m x 0.70m x 1.90m (L x W x D)

Date	Time	Wate (m	er level bgl)		
03/10/2017	0	-0.670	1		
03/10/2017	15	-0.770	1		
03/10/2017	30	-0.840]		
03/10/2017	60	-0.960			
03/10/2017	90	-1.020			
03/10/2017	120	-1.080			
03/10/2017	180	-1.170			
03/10/2017	240	-1.230			
03/10/2017	300	-1.280			
Start depth 0.67	Depth of Pit 1.900		Diff 1.230	75% full 0.9775	25%full 1.5925
Length of pit (m) 2.500	Width of pit (m) 0.700			75-25Ht (m) 0.615	Vp75-25 (m3) 1.08
Tp75-25 (from gi	raph) (s)	37800		50% Eff Depth 0.615	ap50 (m2) 5 686
f =	5.007E-06	m/s		0.010	0.000

APPENDIX 4 – Trial Pit Photographs

Kilternan Village – Soakaway Trial Pit Photos

S 01

S 01

S 02

S 03

REPORT ON SOIL INFILTRATION TESTS

FOR

SOAKAWAY DESIGN

AT

KILTERNAN VILLAGE SITE

CO. DUBLIN

Prepared by: James Lombard BE MIEI

Signed.....

Date: 23rd February 2010

File no: 2430-02-10

Contents

1.0 Preamble:

2.0 Overview

2.1 Background

3.0 Soil infiltration tests

- 3.1 General
- 3.2 Test 1
- 3.3 Test 2
- 3.4 Test 3

4.0 Recommendations and Conclusions

- 4.1 General
- 4.2 Soakaway Design

Appendix 1	Trial pit records
Appendix 2	Soakaway test tables
Appendix 3	Site plan

1.0 Preamble

On the instructions of Mr P. Moran of Pat O'Gorman & Associates Consulting Engineers, three soil infiltration tests were carried out by Ground Investigations Ireland Ltd., at the above site on the 16th of February 2010 to determine the suitability of the subsoil for the construction of a soakaway for surface water run-off.

2.0 <u>Overview</u>

2.1 Background

The site in question is at Kilternan Co. Dublin.

3.0 Soil Infiltration tests.

3.1 General

Three no. Trial Pits were excavated to depths of 1.80 to 2.50metres below ground level (mBGL) at locations indicated by the Consulting Engineers. A Trial Pit Record representing the subsurface conditions encountered in the pits is included in Appendix 1. A site map showing the locations of the trial pits is displayed in Appendix 3. Soakaway tests were carried out in accordance with the *BRE Digest 365, Soakaway Design*.

3.2 Soakaway test 1

At location S1 a trial pit was excavated to 2.50mBGL (metres below ground level) and filled with water to a nominal invert level of 1.00mBGL and allowed to drain. The fall in water level was monitored over time. Details of the trial pit excavated and the fall of water over time can be found in appendix 1 and 2 of this report. The water level dropped to 1.49mBGL in 5¹/₄ hours.

3.3 Soakaway test 2

At location S2 a trial pit was excavated to 2.50mBGL (metres below ground level) and filled with water to a nominal invert level of 1.00mBGL and allowed to drain. The fall in water level was monitored over time. Details of the trial pit excavated and the fall of water over time can be found in appendix 1 and 2 of this report. The water level dropped to 1.13mBGL in 4¹/₄ hours.

3.4 Soakaway test 3

At location S3 a trial pit was excavated to 1.80mBGL (metres below ground level) and filled with water to a nominal invert level of 1.00mBGL and allowed to drain. The fall in water level was monitored over time. Details of the trial pit excavated and the fall of water over time can be found in appendix 1 and 2 of this report. The water level dropped to 1.06mBGL in 3½ hours.

4.0 <u>Recommendations and Conclusions</u>

4.1 General

The recommendations given and opinions expressed in this Report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted from its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. It is further recommended that all excavations when excavated should be inspected to verify the information given in this Report.

4.2 Soakaway design

There was insufficient soakage in S1, S2 and S3 to enable calculation of the soil infiltration rate **f.** Some limited soakage was noted however in S1. We would therefore recommend that the surface water be disposed off site.

TRIAL PIT	RECO	ORD	4					
Project Name: Kilternan Village	-11	10		Но	ole ID	D:SI		
Client: Durkan		Co-o	rdinates	:	-			
Consultant: Pat O'Gorman & Associates		Flove	ation:		-			
Location: Co. Dublin Date: 16/02/2010		Proje	ect no.		2430-	02-10		
Excavator used: Atlas		Logg	ed by:		J.Lom	bard	-	
Strata Description	Legend	Depth	(DOD)	Lype Sa	nples the	/ tests	Water Depth	Date
TOPSOIL		(T)					1	
Prown slightly gravely and CLAV	100	0.25						
Brown slightly gravely sandy CLAY		-						
		1.1						
Light brown slightly gravelly sandy SILT (Possible	12.50	0.70 -						
weathered granite)	AY dy SILT (Possible							
		- 1						
	100							
		-						
	1.355	-						
	20							
	148	-						
		2-						
Broken weathered GRANITE								
		-						
End of Trial pit at 2.50 m	100	2.50 -						
		đ						
		-						
		-						
		-						
		-						
		-						
		-						
		1						
		·						
Remarks:	B	Bulk d	isturbed sam	ple.		8	ROUN	
Water: Seegae at 2.4mBGL Remarks: See report for soakaway test	Ŭ Dimensio	Undis	turbed sample	e 2.60	1		A	Ĩ
	Depth: 2.50	c).75					

		OND			20.7			
Project Name: Kilternan Village				Н	ble II): S2	_	
Client: Durkan		Co-o	rdinates	:	2			
ocation: Co. Dublin		Eleva	ation:		-			
Date: 16/02/2010		Proje	ect no.		2430-	02-10		
Excavator used: Atlas	0	Logg	ed by:	Sa	J.Lom	bard	-	_
Strata Description	Legen	Depth	Level (mOD	Type 0	Depth 5	Result	Water Depth	Date
TOPSOIL				1.1				
Brown slightly gravelly sandy CLAY	12-2	0.20						
		-						
Light brown slightly gravelly sandy SILT (Possible	1 161 500	0.90						
weathered granite)	1.0	1-						
	1.2.2							
		-						
	220							
	1.11	-						
		2-	-					
		-	-					
Deles ODANITE	0000	2.40						
End of Trial pit at 2.50 m		2.50						
		-	-					
		a						
		10						
			-					
		4-	-					
						_		
Remarks:	KEY	Bulk d	listurbed sam	ple.		G	ROUN	
staoniny: singht tail in of thail pit sides Water: No groundwater encountered Remarks: See report for soakaway test	D U Dimensio	Small Undis	disturbed san turbed sample	npie e 2.80			A	
	Depth:	(0.65					

	REG	JRD						
Project Name: Kilternan Village				H	ole IC):S3		
Client: Durkan		Co-0	rdinates	:	-			
Consultant: Pat O'Gorman & Associates		Flove	ation:		1			
Location: Co. Dublin Date: 16/02/2010		Proje	ct no.		2430-	02-10		
Excavator used: Atlas		Logg	ed by:		J.Lom	bard		
Strata Description	end	÷	D)	Sa	mples	/ tests	th	e
TRIAL PIT RECORD Project Name: Kilternan Village H Client: Durkan Co-ordinates: Location: Co. Dublin Elevation: Date: 16/02/2010 Elevation: Excavator used: Atlas Logged by: TOPSOIL 028 0 Brown slightly gravelly sandy CLAY 028 0 Light brown slightly gravelly sandy SILT (Possible 0.70 0 Broken GRANITE 1.80 m 1.90 End of Trial pit at 1.80 m 1.90 1.90	Type	Dept	Sesu	Wat	Dat			
TOPSOIL								
Brown slightly gravelly sandy CLAY	1	0.20						
	222	-						
		-						Date
Light brown slightly gravelly sandy SILT (Possible	13,620	0.70 -						
weathered granite)	138	-						Depth
		1-	_					
	$(-\frac{1}{2})$	-						
	128	-						
		-			Depth Result Water Date			
Prokon CRANITE		1.70 -						
End of Trial pit at 1.80 m		1.80 -						
		2-	1. 4					
		-						
		-						
		-						
		-						
		-	-					
		3-						
		-						
		-						
		-						
		-						
		-						
		-	-					
		4						
		-						
		-						
	-							
2omarka:	KFY						BOULA	
Stability: Slight fall in of trial pit sides	BD	Bulk d Small	listurbed sam disturbed sam	ple. nple		Ĩ	ELANI	
Water: No groundwater encountered Remarks: See report for soakaway test	Dimensio	Undis	turbed sample	э 2.70	đi.		A	
	Depth: 1.80	0	0.70					

Kilternan Soakaway 1

Soakaway Test to BRE Digest 365

The Trial pit was filled with water to 0.95mBGL and the drop in water level with time was recorded below.

Elapsed Time Minutes	Water Level mBGL	Remarks
0	0.95	Hole filled with water after initial presoak
60	1.12	
130	1.25	
250	1.40	
315	1.49	Test complete

Kilternan Soakaway 2

Soakaway Test to BRE Digest 365

The Trial pit was filled with water to 1.00mBGL and the drop in water level with time was recorded below.

Elapsed Time Minutes	Water Level mBGL	Remarks
0	1.00	Hole filled with water after initial presoak
70	1.06	
120	1.10	
255	1.14	Test Complete

Kilternan Soakaway 3

Soakaway Test to BRE Digest 365

The Trial pit was filled with water to 1.00mBGL and the drop in water level with time was recorded below.

Elapsed Time Minutes	Water Level mBGL	Remarks
0	1.00	Hole filled with water after
		initial presoak
60	1.03	
120	1.045	
210	1.06	Test Complete

1.0 Preamble

On the instructions of Mr Pat O' Gorman of Pat O' Gorman & Associates Consulting Engineers, a ground investigation was carried out by "Site Investigations Ltd" over the period 24/02/2006 to 09/05/2006 for proposed residential development at Kiltiernan GAA, Kiltiernan, County Dublin.

2.0 Scope

The scope of the site investigation was to investigate subsurface ground conditions by means of cable percussion and rotary cored boreholes with associated lab testing.

3.0 Site Works

3.1 General

The ground investigation and sampling was carried out in accordance with BS5930:1999 -'British Standard Code of Practice for Site Investigation', and BS1377:1990 - 'British Standard Methods of Test for Soils for Civil Engineering Purposes.

The locations of all the site works are shown on the Exploratory Hole Location Plan in Appendix I.

3.2 Boreholes

Twelve number cable percussion boreholes were sunk. Boreholes BH7, BH12 and BH13 were subsequently cancelled due to access problems. Standpipes for groundwater monitoring were installed in boreholes BH6, BH8 and BH10.

In addition, eight number rotary cored boreholes were carried out adjacent to the relevant cable percussion boreholes to prove rockhead levels across the site.

The borehole records are presented in Appendix II.

Notes on the methodology and limitations of cable percussion boring are given in Appendix V.

3.3 Groundwater Monitoring

The results of the groundwater monitoring in the installations in the boreholes are presented in Appendix III.

3.4 Survey

The locations and ground levels of the boreholes were surveyed and the tabulated results are presented in Appendix II along with the borehole logs.

4.0 Lab Testing

The following testing was carried out on selected samples from the boreholes:

• One number chemical test suite for material disposal purposes

The lab testing was carried out in accordance with BS1377:1990 - British Standard Methods of Test for Soils for Civil Engineering Purposes and the results are presented in Appendix IV.

5.0 Revealed Ground Conditions

A generalised summary of the ground profile is given below. Reference should be made to the individual borehole records in Appendix II for the full strata information at specific locations.

- Firm (locally stiff)brown sandy gravelly CLAY/SILT with some cobbles.
- Medium dense sandy GRAVEL with some cobbles (completely weathered granite with corestones)
- GRANITE.

ĺ

6.0 Groundwater Conditions

Groundwater levels and/or seepage into the boreholes at the time of excavation are noted on the logs in Appendix II. Groundwater monitoring results from the installations in the boreholes are presented in Appendix III.

It should be noted that waterlevels and waterstrikes recorded on the borehole logs do not generally give an accurate indication of the actual groundwater conditions as the borehole is rarely left standing at the relevant depth for a sufficient time for the waterlevel to reach equilibrium, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to facilitate progress. (Perforated standpipe or piezometer installations and associated waterlevel monitoring are required to provide more accurate information regarding groundwater conditions).

Furthermore, groundwater levels vary with time of year, rainfall, nearby construction and other factors.

7.0 Recommendations and Conclusions

7.1 General

.

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern.

3

7.2 Foundations

The following allowable bearing capacities are recommended for the soil and rock strata encountered at the site:

For the firm light brown sandy gravelly CLAY/SILT with some cobbles we would recommend an allowable bearing capacity of 75kN/m². The general depth to the top of this stratum is 0.3mBGL with the depth to the base varying generally between 0.9m and 1.9mBGL, although deeper (3.0m) at BH5.

For the completely weathered granite we would recommend an allowable bearing capacity of 750kN/m² which will exist generally as a medium dense sandy GRAVEL with cobbles, although the grading of this material will vary greatly depending on the degree of weathering. The depth to the top of this stratum varies generally from 0.9m to 1.9mBGL, although deeper (3.0m) at BH5.

For the rock itself we would recommend an allowable bearing capacity of 750kN/m², provided refusal is met with heavy duty ripping when excavating to the level of unproved rock. Depth to rock of this strength varies between 2.8m and 9.9mBGL across the site.

It is not advisable to place foundations partly on soil and partly on rock due to the possibility of excessive differential settlement.

7.3 Rippability

It is considered that the quality of the rock revealed in the boreholes is such that rock breaking will be required, at least off and on, for the following *approximate* depth ranges at the location of each rotary cored borehole:

- RC2 4.0mBGL to base of hole
- RC4 3.3mBGL to base of hole
- RC5 8.2mBGL to base of hole
- RC6 2.8mBGL to base of hole
- RC8 9.9mBGL to base of hole
- RC9 5.7mBGL to base of hole
- RC10 (no good rock to base of hole at 7mBGL)
- RC11 1.6m to base of hole

4

7.4 Aggressive Ground Considerations

The results of the chemical testing(Appendix IV) indicate that the pH is near neutral and that the sulphate content is relatively low. The ground is therefore not considered to be aggressive towards concrete.

7.5 Chemical/Contamination Testing

When dealing with potential contamination, the Irish Building Regulations call for the use of the Code of Practice for the Identification of Potentially Contaminated Sites (ref 1) which in turn cites the use of the ICRCL UK Standard (ref 2). However, the ICRCL UK Standard has been withdrawn and superseded by CLEA 2002 (ref 3) which currently covers only a few substances. Therefore the action levels of the Dutch Standard (ref 4) are generally being used.

The results (Appendix IV) indicate that under the Dutch Standard none of the substances tested showed concentrations exceeding the trigger levels requiring action. Furthermore, none of the trigger levels in the old ICRCL UK Standard or the CLEA 2002 Soil Guideline Values have been exceeded for commercial/industrial land-use.

Each individual landfill site will have it's own criteria for acceptability of waste. The suite of chemical tests carried out covers a broad range of substances and in particular meets the testing requirements of the Murphy environmental suite and the KTK environmental suite, along with much of groups A,B and C of the ICRCL list.

References

1. DD175: Code of Practice for the Identification of Potentially Contaminated Sites, 1985.

2. Interdepartmental Committee on the Redevelopment of Contaminated Land (ICRCL 59/83)

3. Contaminated Land Exposure Assessment (CLEA 2002)

4. "New" Dutch List

5

CONTRACT; Develop	ment at Kiltiernan for Durkan n	ew hom	85			H	OLE I	D;		BH
Client: Consultant: Site Address: Boring Commenced: Boring Completed:	Pat O' Gorman & Associates Kiltiernan 25/02/2006 25/02/2006		 	Elevatio Co-ord Hole Di Drilled Loggeo	on: Inates amete by: I by:	m. E N r: 200 E.1 D.	O.D.) mm Blacos Larkin			
Type of Boring:	Cable Percussion	-	1	1	Sa	mples/Te	ests	Pr	ogress/W	ater
DESCRIP	TION OF STRATA	Unit Dept (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Dept (m
TOPSOIL		- 0.0 0.00	-+-	1				1		
Firm to stiff brown sandy grav	velly CLAY/SILT with some cobbles	0.30			B	0.50	1292			
					6(50)	1.00				
ROCK of BOULDER		- 2.0 2.00	Hole End	i	C(50)	2.00		2.00	25/02/2006	dry(pm
		100								
emarks: Note: Stratum bands < hiselling from 1.30 to 1.40m; 30 mins.	200mm are not Indicated pictorially)	Disturbad	Sample	Ŀ	(ev to S	vmbols	ndisturbe	d Samp	le(drive blo	ows)

CONTRACT: Develor	ment at Kilkiemen for Durke	n new home				н	OFR	2.		DH
Client: Consultant: Site'Address: Boring Commenced: Boring Completed:	Pat O' Gorman & Associat Kiltiernan 24/02/2006 24/02/2006	1998 1998	E C F L	Elevatio Co-ordi Hole Di Drilled Logged	on: nates amete by: by:	m. E N E I E. I D. I	O.D.) mm Blacos Larkin			
Type of Boring:	Cable Percussion	1	-	1	Sa	mplea/Te	ata	Pn	Shee	lt 1 of 1
DESCRIP	TION OF STRATA	Unit Depth (m)	Legend	Elevation (M.O.D.)	Тура	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate
TOPSOIL		- 0.0 0.00	- 7			-				1 ,,
Firm light brown sandy grave	IIV CLAY/SILT with granite cobbles	0.30 E			В	0.40	T1280			
Medium dense silty sandy GF (completely weathered granit	RAVEL with some cobbles te)	-1.0 0.90	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		C(17)	1.00	T1291			
		с Г ²⁰			B C(27)	2.00 2.00	T1282			
			0.00 0.00 0.00 0.00 0.00		B C(50)	3.00 3.00	T1283		24/02/2006	2.90(20
		60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
		10.0								
the first of the second s	200mm are not indicated plotorially)			ļ	ley to S	vmbols		the state of the	and a state to Second	and the state of t

CONTRACT: Develop	ment at Kiltleman for Durkan r	new hom	85			Н	OLE	D:		BH:		
Client: Consultant: Site Address: Boring Commenced: Boring Completed: Type of Boring:	nt: Pat O' Gorman & Associates Co-ordinates ess: Kiltiernan Hole Diamete ommenced: 25/02/2006 Drilled by: ompleted: 25/02/2006 Logged by:						n: m.O.D. lates E N meter: 200 mm y: E. Blacoe by: D. Larkin					
Type of borning.	Cable Fercussion	1.5	1	1	Sa	mples/Te	ests	Pr	Shee oaress/W	t 1 of 1 later		
DESCRIP	TION OF STRATA	Unit Depl (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Dept		
TOPSOIL		- 0.0 0.00			-					1		
Firm brown sandy gravelly CL	AY/SILT	- 0.30			В	0.50	1284					
Medium dense silty very sand (completely weathered granite	ly GRAVEL with some cobbles a)	- 1.30	2000 00 00 00 00 00 00 00 00 00 00 00 00		C(12)	1.00						
		20	2.00 00 00 00 00 00 00 00 00 00 00 00 00		C(22)	2.00 2.00	1286		25/02/2006	2.50(20)		
		3.0	02 0 0 0 0 02 0 0 0 02 0		B C(32)	3.00 3.00	1287					
		140 140 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.										
unarke: (Note:Stratum bends ≪ selling from 3.60 to 3.70m:1hr (refusal)	20mm are not Indicated pictorially) B Bulk D Sma S(9) Stan	Disturbed S Il disturbed	Sample eample	<u>Ki</u>	ey to Si U C	(9) Unc (9) Cor	disturbed ne Penet	Sample	drive blo	ws) e)		

CONTRACT: Develop	iment at Kiltlernan for Durkan n	ew hom	es			Н	OLE I);		BH4
Client: Consultant: Site Address: Boring Commenced: Boring Completed: Ture of Paring:	Pat O' Gorman & Associates Kiltiernan 25/02/2006 25/02/2006 Cable Percussion			ievatio co-ordi lole Di orilled .ogged	on: inates amete by: i by:	m.(E N 200 E. E D. I	D.D. mm Blacoe Larkin		04	
Type of Boring:	Cable Percussion	1.5	1		Sa	nples/Te	ests	Pr	Shee ogress/W	f 1 of 1 later
DESCRIP	TION OF STRATA	Unit Dept (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No	Hole Depth (m)	Date	Wate Depti (m)
TOPSOIL		- ^{0.0} 0.00	-1-							
Firm brown sandy gravelly C	LAY/SILT	L 0.30			В	0.40	T1298			
					C(10)	1.00 1.00	T1289			
Medium dense silty very sand (completely weathered granit	by GRAVEL with some cobbles e)	- 1.70 - 2.0			C(24)	2.00 2.00	T1290	-		
		1	3.0 80 00.0		B	3.00	T1291		25/02/2006 25/02/2006	2.50(20)
GRANITE		F 2.40	0,0×0 g		0(00)	0.00				
Nemariks (Noise: Stratum bands < hiselling from 3,40 to 3,50m: 1 hr (refusa	200 mun are not indicated pictoriality)) B Bulk D Sma S(9) Stan	Disturbed Il disturbed Idard Penel	Sample sample tration Te	<u>A</u> st(N valu	(ey to S (e) (U(9) Un D(9) Un D(9) Co D(°) Co	disturbed ne Pene	d Sampl tration T tration T	e(drive blo est(N valu	awc) al)

an and a standard a second sec	vertere i eleventi, reier to etc		TOUTU	I TOF TO	ck cor	re deta	ns)						
CONTRACT: Develop	ment at Kiltiernan for Durl	kan new hom	65			H	OLEI	2.	1	SH:			
Client: Consultant: Site Address: Boring Commenced: Boring Completed:	tant: Pat O' Gorman & Associates Co-ordinates dress: Kiltiernan Hole Diameter Commenced: 24/02/2006 Drilled by: Completed: 24/02/2006 Logged by:						m.O.D. es E N eter: 200 mm E. Blacoe : D. Larkin						
Type of Bonng:	Cable Fercussion	5	1		Sa	mples/Te	ata	Pr	ogress/W	ater			
DESCRIP	TION OF STRATA	Unit Dept (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Dept (m)			
TOPSOIL		F 00 0.0	-1-										
Firm light brown sandy grave	Ily CLAY/SILT with granite cobble	IS - 0.3			в. С(11)	0.50 1.00 1.00	T1276 T1277						
Stiff light brown sandy gravel	ly CLAY/SILT with granite cobble	s - 1.5			8 C(20)	2.00 2.00	T1278						
BOULDER		30 20 - 3.10	Hole End		B C(50)	3.00 3.00	T1279	3.10	24/02/2006 24/02/2006 24/02/2006	2.80(20 2.90 2.90(pr			
		- 16.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0											
Mase: Stratum bando a	<200mm are not indicated pictorially)				Key to S	Symbols	diaturk	d Comp					

(1	BURI where relevant, refer to	enul attached	E K coring	record	For ro) ick co	re dieta	iils)			
CONTRACT: Develop	ment at Kiltiernan for D	Durkan nev	w home	35			H	IOLE I	D:		BH
Client: Consultant: Site Address: Boring Commenced: Boring Completed: Type of Boring:	Pat O' Gorman & Ass Kiltlernan 28/02/2006 28/02/2006 Cable Percussion	sociates		E C H D L	levatio co-ordi cole Di orilled ogged	on: nates amete by: by:	m. E N 200 E. I D. I	O.D.) mm Blacoe Larkin		Shee	t 1 of
			ŧ		-	Sa	mples/Te	ests	Pro	ogress/W	/ater
DESCRIP	FION OF STRATA		Unit Dep (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Dept (m)
TOPSOIL			- 0.0 0.00	-7-							
Firm brown sandy gravelly CL	AY/SILT		0,30			В	0.50	U0305			
Medium dense silty very send (completely weathered granita	y GRAVEL with some cobble ≥)	29	1.0	10.00 00 00 00 00 00 00 00 00 00 00 00 00		C(10)	1.00	U0305			
			2.0	**************************************		8 C(27)	2.00 2.00	U0307			
			3.0	00000000000000000000000000000000000000		B C(50)	3.00 3.00	U0308		28/02/2006 28/02/2006	2.80(20
			30								
emarks: (Note: Stratum bands <) itselling from 3.30 to 3.40m: 1 hr (refusal imm pipe instelled (slotled from 3.40 to ackfilled with gravel surround from 3.40 to L. Raised steel cover installed.	00mm are not indicated pictorially) 00m, plain from 2.00 to G.L.). 2.00m, bentontile seal from 2.00m to	B Bulk D D Small S(9) Standa S(*) Standa W Water	10.0 isturbed i disturbed ard Penet ard Penet Sample	Sample sample tration Tee tration Tee	E st(N valu st(refusa	(ev to S (e) ()	Vmbols J(9) Ur C(9) Cc C(*) Cc E** W	ndisturber one Pene one Pene aterstrike ater level	d Sampl tration T tration T depth depth 2	e(drive blo est(N val est(refusa 0mins effe	ows) ue) al) er strik

9 E

CONTRACT: Develop	ment at Kiltiernan for Durkar	new home	25			Н):	1	BH8
Client: Consultant: Site Address: Boring Commenced: Boring Completed:	Pat O' Gorman & Associate Kiltleman 28/02/2006 28/02/2006 Cabla Barayasian	35		levatio o-ordi iole Dia orilled I ogged	on: nates amete by: by:	m.(E N 200 E. I D. I	D.D. mm Blacoe _arkin		Chao	1 051
i ype or Boring:	Capie Percussion	1.5	1	1	Sa	mples/Te	ests	Pro	ogress/W	ater
DESCRIP	TION OF STRATA	Unit Dept (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Depti (m)
TOPSOIL		- 0.0 0.00	-7-							
Firm brown sandy gravelly Cl	LAY/SILT	C.20			в	0.50	U0301			
		- - 1.0			B C(12)	1.00	U0302			
Medium dense silty very sand (completely weathered granit	dy GRAVEL with some cobbles (e)	- 1.30 -	2000 00 00000 000000							
		- 2.0 E	00000000000000000000000000000000000000		C(27)	2.00	00303		28/02/2006	2 60/20
		3.0	500 00 00 00 00 00 00 00 00 00 00 00 00		B C(50)	3.00 3.00	U0304		28/02/2006	2.80
BOULDER		249	d -					3.50	28/02/2005	3.00(pg
		land on the construction of the construction o								
		E								
temarks: (Note: Stratum bands hisalling from 2.80 to 2.90m; 30 mins, hisalling from 3.40 to 3.50m; 1 hr (refusi	<200mm are not indicated pictorially) al) S(9)	10.0 Bulk Disturbed Small disturbed Standard Pene	Sample I sample tration Te	est(N valu	Key to S	C(9) C(9) C(9) C(9) C(1) C(1) C(1) C(1) C(1) C(1) C(1) C(1	ndisturbe one Pene one Pene	d Sampi stration T stration T	le(drive bl Test(N val Test(refus	owa) ue) al)

1

.

1

-

	oment at Klitlernan for Durkan n	lew hom	es			H	IOLE I	D:		BHS
Client: Consultant: Sité Address: Boring Commenced: Boring Completed: Type of Boring:	Pat O' Gorman & Associates Kiltleman 26/02/2006 26/02/2006 Cable Percussion		E L	Elevatio Co-ord Hole Di Drilled Loggeo	on: inates amete by: I by:	m. E N r: 200 E.1 D.	O.D. I D mm Blacos Larkin	3		
Type of Bornig.	Jamie i citudositii	-	1	1	Sa	mpies/Te	ests	Pr	Shee ogress/W	ater
DESCRIP	TION OF STRATA	Unit Dept (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Dept
TOPSOIL		E 0.0 0.00)					-		
Firm brown sandy gravelly Cl	LAY/SILT	0.30			в	0.50	T1297			
		141			B	1.00	T1298	Î		
Medium dense silty very sand (completely weathered granit	dy GRAVEL with some cobbles	- 1.40	11000		S(II)	1.00				
	,	20	000 00 00 00 00 00		B	2.00	T1299			
		4.0								
		Lundon 100 100 100 100 100 100 100 100 100 10						×		

	ment at Kiltiernan for Durkan ne	ew hom	es			Н	OLE I	D:	В	H10
Client: Consultant: Site Address: Boring Commenced: Boring Completed:	Pat O' Gorman & Associates Kiltiernan 26/02/2006 26/02/2006 Cabla Barguerian			Elevatio Co-ordi Iole Di Iole Di Iole Di Iole Di	on: nates amete by: l by:	m. E N 200 E. I D. I	O.D.) mm Blacoe Larkin		04	
Type of Boring:	Cable Percussion	1 -	1	1	Sa	mples/Te	ests	Pro	Shee paress/M	t 1 of 1
DESCRIP	TION OF STRATA	Unit Deptl (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Dept (m
TOPSOIL		- 0.0 0.00	-1-				-		-	
Firm brown sandy gravelly C	LAY/SILT	- 0.30			B	0.50	T1294			
Medium dense silty very sant (completely weathered granit	dy GRAVEL with some cobbles e)	1.20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		C(14)	1.00				
		F2.0	0000		B C(50)	2.00 2.00	T1296			
		50 State 150					-			
		Lula de la contra								

CONTRACT: Develop	oment at Kiltlernan for Dur	kan new hom	es			Н	OLE I	D:	В	H1'
Client: Consultant: Site Address: Boring Commenced: Boring Completed:	Pat O' Gorman & Assoc Kiltiernan 28/02/2006 28/02/2006	lates		Elevatio Co-ordi Hole Di Drilled Loggeo	on: inates amete by: I by:	m. E N 200 E. I D. I	O.D. I mm Blacoe Larkin			
Type of Boring:	Cable Percussion	-	1		Sa	mples/Te	ests	Pr	Shee ogress/M	ater
DESCRIP	TION OF STRATA	Unit Dept (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Dept
TOPSOIL		0.0 0.00				1				
Firm brown sandy gravelly C	LAY/SILT	0.20			в	0.40	00309			
Medium dense silly very sand (completely weathered granit	dy GRAVEL with some cobbles	1.20	000 0 114		B C(9)	1.00 1.00	U0310			
		20			B C(21)	2.00 2.00	U0311			
		3.0			B C(50)	3.00 3.00	U0312		28/02/2006	, 2.80(20) 3.00
le <i>marks: Note: Stratum bande ⊲</i> riselling from 3.30 to 3.60m: 1 hr (refusa	200mm are not indicated pictorially) al) B D S(5)	Bulk Disturbed Small disturbed Standard Pene	Sample sample tration Te	Eest(N valu	(ey to S	Vmbols J(9) Un C(9) Co C(7) Co	disturbe ne Pene	d Sampl tration T tration T	le(drive bio Test(N valu	ows) ue) al)

and a second	ment at Kiltiernan for Durkan	new hom	es			H	IOLE I	D:	B	H1.
lient: onsultant: té Address: oring Commenced: oring Completed:	Pat O' Gorman & Associates Kiltiernan 29/02/2006 29/02/2006 Cabla Barausaian			Elevatio Co-ord Hole Di Drilled Loggeo	on: inates amete by: I by:	m. E k 200 E.1 D.	O.D. I) mm Blacoe Larkin			
pe of Borning.	Cable Percussion	1-		1	Sa	mples/Te	ests	Pr	Shee oaress/M	at 1 of
DESCRIPT	TION OF STRATA	Unit Dept (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Dep (m
DPSOIL iff brown sandy gravelly CL/	RY/BILT	- ^{0.0} 0.00 C 0.20			В	0.20	U0315			
edium dense silty very sand ompletely weathered granite	y GRAVEL with some cobbles	- 1.0 - 1.20	1441 00 00		C(ქ7)	1:28	U0316			
		2.0			C(30)	2.00				
RANITE (presumed bedrock,	possible boulder)	- 3.0 2.85			в	2.95	U0317	3.00	29/02/2006 29/02/2006 29/02/2006	2.80(20 2.90 2.85(pr
rks:	Omm are not indicated pictorially) B Bulk D Sma	T0.0 Disturbed S	ample	K	ev to Si	<u>/mbols</u> (9) Uno (9) Cor	disturbed	Sample	e(drive blo	WS)
ris:Note:- Stratum Bands <20 ing from 2.80 to 2.90m: 45 mina. ing from 2.95 to 3.00m: 1 hr (refusal)	Dmm are not indicated pictorially) B Bulk D Sma S(9) Star S(*) Star VV VVat	10.0 Disturbed S Il disturbed s dard Penetr dard Penetr er Sample	sample sample ation Tes	t(refusal)	ev to St U C S) C S S	/mbois (9) Unn (9) Cor (*) Cor ** Wa 2**** Wa	disturbed ne Penet terstrike ter level		I Sample ration To ration To depth depth 20	I Sample(drive blo ration Test(N valu ration Test(N valu ration Test(refusal depth depth 20mins after

POWLINGEL, Develop	ement at Kiltiernan for Duri	kan new home	35			H	OLE I	7:	B	H1!
Client: Consultant: Site Address: Boring Commenced: Boring Completed:	Pat O' Gorman & Associ Kiltiernan 29/02/2006 29/02/2006 Cabla Bacauccian	lates	E O H D L	ievatio o-ordi lole Di Irilled I ogged	on: nates amete by: by:	m. E N E.1 D.1	O.D. mm Blacoe Larkin			
Type or Boring:	Cable Percussion	-			Sar	mples/Te	ests	Pr	Shee ogress/W	t 1 of
DESCRIP	TION OF STRATA	Unit Dept (m)	Legend	Elevation (M.O.D.)	Туре	Depth (m)	Ref No.	Hole Depth (m)	Date	Wate Dept (m
TOPSOIL Brown sandy gravelly CLAV		- 00 0.00							1	
Diomisano) graven) ochra	SIL I				В	0.50	U0318			
Medium dense to dense silty (completely weathered grani	very sandy GRAVEL with some o te)	obbles - 1.10	10000000000000000000000000000000000000		C(11)	1.00	U0319			
		20			B C(38)	2.00	U0320			
GRANITE (presumed bedroc	k, possible boulder)	- 3.0 2.00	Hole End		0/501			3.00	29/02/2009 29/02/2006 29/02/2006	2.75(20 2.80 2.90(pi
		50 1								
amarks: iseling from 2.30 to 2.50m: 45 mins. iseling from 2.90 to 3.00m: 1 hr (refuse	200mm are not indicated pictorially) (I) B D S(3)	Bulk Disturbed Small disturbed	Sample sample	K st(N vaiu	(ev to S	vmbols J(9) Ur C(9) Co C(*) Co	ndisturbed one Pene	d Samp tration 1 tration 1	le(drive bk lest(N vak	ows) ue) al)

REF: AGL07380_01

REPORT ON THE GEOPHYSICAL SURVEY FOR THE PROPOSED DEVELOPMENT AT KILTERNAN VILLAGE, CO. WICKLOW FOR

DURKAN NEW HOMES.

3RD JULY 2008

PRIVATE AND CONFIDENTIAL

THE FINDINGS OF THIS REPORT ARE THE RESULT OF A GEOPHYSICAL SURVEY USING NON-INVASIVE SURVEY TECHNIQUES CARRIED OUT AT THE GROUND SURFACE. INTERPRETATIONS CONTAINED IN THIS REPORT ARE DERIVED FROM A KNOWLEDGE OF THE GROUND CONDITIONS, THE GEOPHYSICAL RESPONSES OF GROUND MATERIALS AND THE EXPERIENCE OF THE AUTHOR. APEX GEOSERVICES LTD. HAS PREPARED THIS REPORT IN LINE WITH BEST CURRENT PRACTICE AND WITH ALL REASONABLE SKILL, CARE AND DILIGENCE IN CONSIDERATION OF THE LIMITS IMPOSED BY THE SURVEY TECHNIQUES USED AND THE RESOURCES DEVOTED TO IT BY AGREEMENT WITH THE CLIENT. THE INTERPRETATIVE BASIS OF THE CONCLUSIONS CONTAINED IN THIS REPORT SHOULD BE TAKEN INTO ACCOUNT IN ANY FUTURE USE OF THIS REPORT.

P ROJECT NUMBER	AGL07380		
AUTHOR	CHECKED	REPORT STATUS	DATE
EURGEOL YVONNE O'CONNELL P.GEO., M.SC (GEOPHYSICS)	EURGEOL PETER O'CONNOR P.GEO., M.SC (GEOPHYSICS), DIP EIA MGT.	V.1	3 RD JULY 2008

TABLE OF CONTENTS

1. 1.1	INTRODUCTION Survey Objectives	1 1
1.2	Survey Methodology	1
1.3	Site Background	1
1.4	Report Outline	1
2. 2.1	INTERPRETED RESULTS Electromagnetic Conductivity	2 2
2.2	2D Resistivity Profiling	2
2.3	Seismic Refraction	2
2.4	Integrated Results	3
3.	CONCLUSIONS AND RECOMMENDATIONS	4
4.	REFERENCES	5
MAPS Map 1 Map 2 Map 3	Geophysical Survey Locations Conductivity Contour Map Summary Map	1:2000 1:2000 1:2000
INTER Section Section Section Section Section	PRETED SECTIONSn 12D Resistivity Profile R1 & Seismic Spread S1n 22D Resistivity Profile R2 & Seismic Spreads S2 & S5n 32D Resistivity Profile R3 & Seismic Spreads S3 & S4n 42D Resistivity Profile R4 & Seismic Spreads S6 & S7n 52D Resistivity Profile R4 & Seismic Spread S8	1:750 1:750 1:750 1:750 1:750 1:750

APPENDICES

Appendix I	Methodology
Appendix II	Seismic data
Appendix III	Excavatability
1. INTRODUCTION

APEX Geoservices Ltd. was requested by Pat O'Gorman & Associates on behalf of their client Durkan New Homes to carry out a geophysical survey at a proposed development site in Kilternan, Co. Dublin.

1.1 Survey Objectives

The objectives of the survey were to assess the sub-surface conditions across the site including type and thickness of overburden and the depth to bedrock.

1.2 Survey Methodology

- Electromagnetic conductivity mapping to outline zones of shallow rock and to map lateral variations in overburden type & thickness.
- 2D Resistivity to determine overburden and bedrock resistivity and investigate variations in depth to bedrock, overburden material and bedrock type including possible faults and other structural features.
- Seismic Refraction profiles were recorded to map overburden thickness, depth to bedrock and to indicate overburden stiffness and to assess rock quality and excavatability.

1.3 Site Background

The site is located on the eastern side of Enniskerry Road in Kilternan Village and is approximately 5.6ha in size. The site is bounded to the north and south by developed property including houses and a petrol station. The site is open to the east. The topography across the site ranges from 147.9mOD in the centre of the sites, sloping gently to 141.5mOD in the north and to 139.5mOD in the southeast of the site.

The Geological Survey of Ireland 1:100,000 Bedrock Map Series for the area (GSI, Online Geological Map) indicates that the site is underlain by Type Nt3 Granite of the Leinster Granite which comprises granite with muscovite phenocrysts.

The Geological Survey of Ireland 6 inch to 1 mile historic bedrock geology field sheets for the area (mapped in the nineteenth century) indicate some limestone gravel across the site, underlain by granite.

The Geological Survey of Ireland Teagasc subsoils map for the area indicates that the soil type across the site comprises till derived from granite. Made ground is indicated directly north, south and west of the site and outcrop/subcrop is indicated to both the northwest and northeast of the site.

1.4 Report Outline

- The survey results are discussed in Part 2.
- Conclusions and recommendations are given in Part 3.
- The conductivity values are plotted on Map 2.
- The interpreted resistivity data are shown on Sections 1 to 5.
- Summary results and proposed drilling locations are shown on Map 3.
- The survey methodology is contained in Appendix I.
- The seismic refraction data is contained in Appendix II.
- An excavatability rating chart is contained in Appendix III.

2. INTERPRETED RESULTS

2.1 Electromagnetic Conductivity

The results of the EM31 Conductivity Survey were contoured and plotted on Map 2. The conductivity data values ranged from 10 to 20 mS/m and were interpreted on the following basis:

Conductivity (mS/m)	Interpretation of 0 – 6m Below Ground Level
10.0 - 11.25	Near surface (approx. 1m BGL) Granite Bedrock
11.25 - 16.0	Near surface (approx. 1m BGL) Granite Bedrock with open water-filled joints
16.0 - 20.0	Probable interference from Metal Fences, Cultural Noise, etc

Note: Some spurious conductivity values were recorded in the vicinity of cultural noise such as the goal posts and metal fencing and these points have been removed from the dataset and are not included on Map 2.

2.2 2D Resistivity Profiling

Five 2D resistivity profiles (R1-R5) were recorded across the site (Map 1). The resistivity data have been interpreted on the following basis:

Apparent Resistivity (ohm-m)	Interpretation
300-500	Clayey SAND/GRAVEL
500-1000	Silty SAND/GRAVEL
1000-3000	SAND/GRAVEL
300-800	GRANITE with open water-filled joints
800-3500	GRANITE

The overburden materials across the site have been subdivided into three types based on typical resistivity ranges. The lowest resistivities from 300-500 Ohm-m have been interpreted as indicating clayey sand/gravel. As the sand/gravel content increases the resistivity values increase with a maximum range of 1000-3000 Ohm-m for clean sand/gravel.

Granite bedrock has been interpreted as having resistivities in the range 800-3500 Ohm-m with low bedrock resistivies (300-800 Ohm-m) interpreted as granite with open joints that are water-filled. These low values may also indicate a fault zone through the site.

2.3 Seismic Refraction

Eight seismic refraction spreads (S1-S8) were recorded across the survey area at the locations shown on Map 1. The seismic data indicate 4 velocity layers which have been interpreted on the following basis:

Layer	Seismic Velocity (m/s)	Average Velocity (m/s)	Interpretation	Estimated Stiffness/ Rock Quality	Excavatability
1	178-324	227	Overburden Material	Soft-Firm/ Loose	Diggable
2	343-857	496	Completely to Highly Weathered Granite	Poor	Diggable
3	706-1500	1048	Highly to Moderately Weathered Granite	Poor-Fair	Diggable – Heavy Breaking
4	3161-3963	3527	Slightly Weathered to Fresh Granite	Good/Very good	Break/ blast

Layer 1 velocities would be typical of soft to firm or loose overburden material. Layer 2 velocities would be typical of completely to highly weathered granite. Layer 3 velocities would be typical of highly to moderately weathered granite and Layer 4 velocities would be typical of slightly weathered to fresh granite bedrock.

2.4 Integrated Results

The results of the 2D Resistivity and seismic data have been combined with the available borehole information to produce Sections 1 to 5. The combined interpretation has been summarised as follows:

Layer	Velocity (m/s)	Average Velocity (m/sec)	Resistivity (ohm-m)	Thickness Range (m)	Average Thickness (m)	Interpretation	Estimated Stiffness/ Rock Quality	Excavatability/ Rippability
			300-500			Clayey SAND/GRAVEL	1.0050	Diggablo
1	178-324	227	500-1000	0.6-1.2	0.9	Silty SAND/GRAVEL	LOOSe	Diggable
			1000-3000			SAND/GRAVEL		
2	343-857	496	300-3500	0.8-3.0	1.6	Completely to Highly Weathered Granite	Poor	Diggable
3	706-1500	1048	300-3500	0.0-4.6	2.5	Highly to Moderately Weathered Granite	Poor-Fair	Diggable – Heavy Breaking
	3161-	2507	300-800			Slightly Weathered to Fresh Granite with	Good/Very	Prook/Plast
4	3963	5521	800-3500			Slightly Weathered to Fresh Granite	good	

Overburden:

The geophysical data indicate a thin layer of sandy/gravelly overburden across the site. The thickness of this layer varies locally but is typically 0.9m thick. This overburden material will be diggable.

Bedrock:

The geophysical data indicate three layers within the granite bedrock; an upper layer of completely to highly weathered granite that has an average thickness of 1.6m across the site, underlain by a layer of highly to moderately weathered granite with corestones of unweathered rock that has an average thickness of 2.5m across the site, over slightly weathered to fresh granite bedrock at depths ranging from 2m to 6.9m below ground level.

The low velocities of the completely to highly weathered granite layer indicate that this material will be diggable. The highly to moderately weathered granite layer includes corestones of unweathered granite and any excavation of this layer will range from diggable where the granite is highly weathered to heavy breaking. Any excavation of the slightly weathered to fresh granite will require heavy breaking and blasting.

Low bedrock resistivies (300-800 Ohm-m) and high conductivities predominantly along the western and sourthern parts of the site have been interpreted as indicating granite with open joints that are water-filled. The extent of this low resistivity bedrock is indicated on Map 3. The contact between the two rock types may be faulted.

The conductivity data in conjunction with the 2D Resistivity data have been combined to produce Summary Map 3, indicating variations in the bedrock across the site. The western part of the site is dominated by lower resistivity granite with open water-filled joints while the eastern part of the site is dominated by the higher resistivity granite bedrock. A possible fault line has been interpreted between the two rock types.

3. CONCLUSIONS AND RECOMMENDATIONS

The geophysical data agreed well with the borehole data.

The geophysical survey indicated 4 subsurface layers across the site as follows:

- 1. An upper layer, on average 0.9m thick, of diggable sandy/gravelly overburden material.
- 2. A second layer, on average 1.6m thick, of diggable completely to highly weathered granite.
- A third layer, on average 2.5m thick, of highly to moderately weathered granite with corestones of unweathered rock. Excavation of this layer will range from diggable where the granite is highly weathered to heavy breaking.
- 4. A fourth layer comprising slightly weathered to fresh granite bedrock at depths ranging from 2m to 6.9m below ground level. Any excavation of the slightly weathered to fresh granite will require heavy breaking and blasting.

In addition, variations in bedrock resistivies have been interpreted as indicating a change in bedrock type along the western and southern boundaries of the site, from granite to granite with open joints that are water-filled. The contact between the two rock types may be faulted.

If bedrock excavation were proposed, a detailed assessment of excavatability should be carried out combining the results of the geophysical survey, rotary core drilling, strength testing, and trial excavation pits using a high powered excavator. Trial excavations should be attempted down to formation level using a high powered excavator of similar rating to that to be used during construction.

A more detailed discussion of velocity and excavatability is contained in Appendix III.

The geophysical interpretation should be reviewed based on the findings of any further direct investigation.

4. REFERENCES

Bell F.G., 1993; 'Engineering Geology', Blackwell Scientific Press.

Campus Geophysical Instruments, 2000; 'RES2DINV ver. 3.4 Users Manual', Birmingham, England.

Golden Software, 1994; 'SURFER 7 Surface Mapping System Users Manual', Golden Software, CO., USA.

GSI website for the, Bedrock, 6" Geology, Quaternary, Aquifer Maps of the site area.

Hagedoorn, J.G., 1959; 'The plus - minus method of interpreting seismic refraction sections', Geophysical Prospecting, 7, 158 - 182.

Palmer, D., 1980; 'The Generalized Reciprocal Method of seismic refraction interpretation', SEG.

Redpath, B.B., 1973; 'Seismic refraction exploration for engineering site investigations', NTIS, U.S. Dept. of Commerce

Sheriff, R.E., and Geldart, L.P., 1982; Exploration seismology, volume 1: Cambridge University Press, 253 pp.

Soske, J.L., 1959; 'The blind zone problem in engineering geophysics', Geophysics, 24, pp 359-365. Durkan New Homes, Kilternan, Co. Dublin

Geophysical Survey

MAPS & SECTIONS

Apex Geoservices Limited

APPENDIX I GEOPHYSICAL METHODOLOGY

M1.	Methods Used			
1.1	CM31 Conductivity Mapping			
1.2	2D-Resistivity Profiling			
1.3	Seismic Refraction Profiling			
M2.	Equipment Used			
2.1	CM31 Conductivity Mapping			
2.2	2D-Resistivity Profiling			
2.3	Seismic Refraction Profiling			
M3.	Field Procedure			
M3. 3.1	Field Procedure CM31 Conductivity Mapping			
M3. 3.1 3.2	Field Procedure CM31 Conductivity Mapping 2D-Resistivity Profiling			
M3. 3.1 3.2 3.3	Field Procedure CM31 Conductivity Mapping 2D-Resistivity Profiling Seismic Refraction Profiling			
M3. 3.1 3.2 3.3	Field Procedure CM31 Conductivity Mapping 2D-Resistivity Profiling Seismic Refraction Profiling			
M3. 3.1 3.2 3.3 M4.	Field Procedure CM31 Conductivity Mapping 2D-Resistivity Profiling Seismic Refraction Profiling Data Processing			
M3. 3.1 3.2 3.3 M4. 4.1	Field Procedure CM31 Conductivity Mapping 2D-Resistivity Profiling Seismic Refraction Profiling Data Processing CM31 Conductivity Mapping			
M3. 3.1 3.2 3.3 M4. 4.1 4.2	Field Procedure CM31 Conductivity Mapping 2D-Resistivity Profiling Seismic Refraction Profiling Data Processing CM31 Conductivity Mapping 2D-Resistivity Profiling			

M1. Methods Used

1.1 EM Conductivity

This method operates on the principle of inducing currents in conductive substrata and measuring the resultant secondary electro-magnetic field. The strength of this secondary EM field is calibrated to give apparent ground conductivity in milliSiemens/metre (mS/m). As the effective penetration of this method is around 6m below ground level the measured conductivity is a function of the different overburden layers and/or rock from 0 to 6m below ground level.

1.2 2D-Resistivity Profiling

The resistivity surveying technique makes use of the Wenner resistivity array whereby four electrodes are placed in a line in the ground and a current is passed through the two outer electrodes. The potential difference is measured across the two inner electrodes. The measured potential is divided by the current value to obtain the resistance. The resistivity is determined from the resistance using the following formula:

Resistivity = Resistance* 2 * Pi * Spacing.

The 2D-resistivity profiling method records a large number of resistivity readings in order to map lateral and vertical changes in material types. The 2D-resistivity profiling method involves the use of 32 electrodes connected to a resistivity meter, using computer software to control the process of data collection and storage.

1.3 Seismic Refraction Profiling

This method measures the velocity of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities. Readings are taken using geophones connected via multi-core cable to a seismograph.

M2. Equipment Used

2.1 EM Conductivity

The equipment used was a GF CM31 Conductivity meter equipped with data logger. This instrument features a real time graphic display of the previous 20 measurement points to monitor data quality and results.

2.2 2D-Resistivity Profiling

A Campus instrument with a 32 take-out multicore cable (5 m spacing) and 32 stainless steel electrodes were used. Equipment was carried in a 4WD. A two-person crew was employed.

2.3 Seismic Refraction Profiling

A RAS-24 high resolution 24 channel digital seismograph, 12 10HZ vertical geophones and a 10 kg hammer were used to provide first break information, with two 12 take-out cables (5m spacing) and a trigger geophone. Equipment was carried in a 4WD vehicle with a two-person crew.

M3. Field Procedure

3.1 EM Conductivity

1660 conductivity readings were recorded on the 11th and 12th December 2007.Conductivity and inphase values were recorded on an approximate 3m x 25m grid over an approximate area of 5.6 hectares. Local conditions and variations were recorded.

3.2 2D-Resistivity Profiling

Five profiles were recorded on the 11th and 12th December 2007. An electrode spacing of 5 m investigating to a maximum depth of 30 m below ground level was used. The profiles were 155 m in length. 2 cycles were recorded to 3% repeatability. Saline solution was added around electrodes in areas of high contact resistance. Local conditions and variations were recorded. QC inversion of each profile was carried out before removal of electrodes.

3.3 Seismic Refraction Profiling

Eight spreads were recorded on the 11^{th} and 12^{th} December 2007. Each seismic spread consisted of 12 collinear geophones at spacings of 3m, and were 33m in length. Records from up to five different positions were taken on each spread (2 x off-end, 2 x end, 1 x middle) to ensure optimum coverage of all refractors.

M4. Data Processing

4.1 EM31 Conductivity Mapping

The data were downloaded and plotted. Assignation of material types and possible anomaly sources was carried out, with cross-reference to other data. A scaled plot of conductivity against distance was prepared (Map 2) with annotated interpretation (Map 3).

4.2 2D-Resistivity Profiling

The field readings were stored in computer files and inverted using the RES2DINV package (Campus Geophysical Instruments, 1997) with up to 5 iterations of the measured data carried out for each profile to obtain a 2D-Depth model of the resistivities. The readings were edited to remove any noisy reading. Topographic corrections were applied.

The inverted 2D-Resistivity models and corresponding interpreted geology are displayed on Sections 1 to 5. The distance from the first electrode is indicated along the horizontal axis of the profile and the depth below ground level is indicated on the vertical axis. The resistivity profiles have been contoured using the same contour intervals and colour codes.

It is important to note that the data displayed on the 2D-Resistivity profiles is real physical data however interpretation of the geophysical results is required to transform the resistivities directly into geological layers.

4.3 Seismic Refraction Profiling

First break picking in digital format was carried out using the FIRSTPIX software program to construct traveltime plots for each spread. Velocity phases were selected from these plots using the GREMIX software program and were used to calculate the thickness of individual velocity units. Topographic data were input. Material types were assigned and estimation made of material properties, cross-referenced to the 2D Resistivity and borehole data. The processed seismic data are displayed in Appendix II and on Sections 1 to 5.

Approximate errors for velocities are estimated to be +/- 10%. Errors for the calculated layer thicknesses are of the order of +/-20%. Possible errors due to the "hidden layer" and "velocity inversion" effects may also occur (Soske, 1959).

Geophysical Survey

APPENDIX II SEISMIC REFRACTION DATA

Apex Geoservices Limited

Geophysical Survey

APPENDIX III EXCAVATABILITY

Apex Geoservices Limited

The seismic velocity of a rock formation is related to characteristics of the rock mass which include rock hardness and strength, degree of weathering and discontinuities. Usually the velocity is just one of several parameters used in the assessment of excavatability. The excavatability of a rock formation is favoured by the following factors:

- · Open fractures, faults and other planes of weakness of any kind
- Weathering
- Brittleness and crystalline nature
- High degree of stratification or lamination
- Large grain size
- Low compressive strength

Weaver (1975) presented a comprehensive rippability rating chart (Fig.1) in which the p-wave velocity value and the relevant geological factors could be entered and assigned appropriate weightings. The total weighted index was found to correlate very well with actual rippability.

Rock class	Ι	II	III	IV	٧
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock
Seismic velocity					
(m/s)	>2150	2150-1850	1850-1500	1500-1200	1200-450
Rating	26	24	20	12	5
Rock hardness	Extremely hard	Very hard rock	Hard rock	Soft rock	Very soft rock
	rock				
Rating	10	5	2	1	0
Rock weathering	Unweathered	Slightly	Weathered	Highly	Completely
		weathered		weathered	weathered
Rating	9	7	5	3	1
		0000 1000	4000.000	000 50	-50
Joint spacing (mm)	>3000	3000-1000	1000-300	300-50	<50
Rating	30	25	20	10	5
1-i-t tiit .	Ning and income	01-14-	Orationary	Qti	Qti
Joint continuity	Non continuous	Slightly	Continuous-	Continuous-	Continuous-
Deting	F	conunuous	no gouge	some gouge	with gouge
Raung	5	5	3	0	U
loint aquae	No separation	Slight separation	Separation	Goure	Gouge >5mm
Joint gouge	No Separation	olight separation	<1mm	<5mm	oouge - onim
Rating	5	5	4	3	1
, in the second s		-		-	
Strike and dip	Very	Unfavourable	Slightly	Favourable	Very
orientation	unfavourable		unfavourable		favourable
Rating	15	13	10	5	3
Total rating	100-90	90-70*	70-50	50-25	<25
Rippability	Blasting	Extremely hard	Very hard	Hard ripping	Easy ripping
assessment		ripping and	ripping		
		blasting			
Tractor horsepower		770/385	385/270	270/180	180
Tractor kilowatts		575/290	290/200	200/135	135

Fig.1 Rippability Rating Chart

Appendix 12.9

DLRCC Flood Zone Map No.9

(Not to scale at A4)

Appendix 12.10

DLRCC LAP Map No.PL-13-402

(Not to scale at A4)

Appendix 12.11

IW/DLRCC Drainage Records drawings

Kilternan Village

5/29/2018 9:45:34 AM

Legend

Storm	water Gravity Mains (Irish Water Owned)	\$
-	Surface	
Storm	water Gravity Mains (Non-Irish Water Owned)	
-	Surface	\$
Storm	Manholes	
+	Cascade	
-	Catchpit	
:E:	Hatchbox	
H.	Lamphole	
(\pm)	Standard	
i = i	Other; Unknown	\$
Storm	Inlets	
-	Gully	
\pm	Standard	
t=1	Other; Unknown	

Storm Fittings Vent/Col Other: Unknown Storm Discharge Points

- Outfall
- Overflow
- 1 Soakaway
- Other; Unknown L = 1
- Storm Culverts
- Storm Clean Outs

Foul

Overflow

Unknown

- Gravity Mains (Irish Water owned)
- Combined

Conditionance Survey Ireland | Conditionance Survey Ireland |

- -- Foul
 - Overflow

-i- Foul

- Unknown

wer Gravity Mains (Non-Irish Water owned)

Sewer Pressurized Mains (Irlsh Water owned)

Sewer Pressurized Mains (Non-Irish Water owned)

Combined

Overflow

Combined

Overflow

Unknown

Combined

Unkno

Foul

Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland. It should not be relied upon in the event of excavations or other works being carried out in the vicinity of the network. The onus is on the parties carrying out the works to ensure the exact location of the network is identified prior to mechanical works being carried out out service pines are not concretely works being carried out. Service pipes are not generally shown but their presence should be anticipated.

"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and waranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect, special, incidental, punitive or consequential loss including loss of profits, special, incidental, punitive or consequential loss including loss of motols, arising out of or in connection with the use of the Information (including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone 1850 427 747 or e-mail dig@gasnetworks.ie – The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of the gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, 'Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie."

Appendix 12.12

OPW Flood Hazard Report

OPW National Flood Hazard Mapping

Summary Local Area Report

This Flood Report summarises all flood events within 2.5 kilometres of the map centre.

The map centre is in:

County: Dublin

NGR: O 206 223

This Flood Report has been downloaded from the Web site www.floodmaps.ie. The users should take account of the restrictions and limitations relating to the content and use of this Web site that are explained in the Disclaimer box when entering the site. It is a condition of use of the Web site that you accept the User Declaration and the Disclaimer.

6. Glenamuck Stream Glenamuck Road Recurring County:Dublin

Additional Information: Reports (2) More Mapped Information

7. Enniskerry Road Recurring County: Dublin

Additional Information: Reports (2) More Mapped Information

Start Date:

Flood Quality Code:4

Start Date:

Flood Quality Code:4

Appendix 12.13

Green Roofs Information

Intended Use.

The Moy Total Extensive Green Roof System is a robust waterproofing assembly finished with a native Irish Sedum mix species extensive green roof assembly, designed to provide a self-sustaining low maintenance green roof which provides substantial rainwater attenuation benefits and provides habitat for bees and invertebrates. The Moy Extensive Green roof may be installed in "Blue Roof" configuration, whereby drainage of the roof is delayed, or may be installed on roofs where free drainage takes place.

Green Roof Assembly and Key Data.

Element	Key Characteristics	Notes
Moy Sedum Mix Blanket	30mm Thickness	Native Irish Species Mix.
Moy Growing Media	50mmThickness	Recycled Brick & Organic Materials
Filtration Fleece VLF150	1mm Thickness	Recycled fibres.
DE25H Reservoir Layer	25mm Thickness	Recycled Plastics.
Protection Fleece VLU300	2mm Thickness	Recycled fibres.
System PH Value	PH 7.1	

Weight & Water Attenuation Data.

Total Mass per M2 – Dry Condition.	C. 70 Kg / M2.
Total Mass per M2 – Saturated Condition	C. 125 Kg / M2.
Rainwater Attenuation Capacity	C. 44 litres / M2. (Dynamic Value).

Moy Extensive Green Roofs provide a substantial rainwater attenuation capacity and may be incorporated in site specific SUDs Design.

Moy Warm Roof Waterproofing & Insulation Assembly.

Paralon System Assembly.

1. Vapour Controlling Layer, Parabase modified bitumen.

2. Thermal Insulation, Paratherm T, PIR foam core by Kingspan Insulation, available as a flat or tapered layer. High Efficiency of 0.024 W/mK.

3. Paralon TOP/S polyester reinforced base layer, modified bitumen, torch applied membrane.

4. Paralon NT4 polyester reinforced cap layer, root resistant, modified bitumen, torch applied membrane.

Approvals, Compliance & Certification.

- BBA Certified Certificate No. 09/4688 (Life Expectancy in Excess of 40 Years).
- FM Global Insurance Corporation Approved.
- Compliant with FLL (Germany) and GRO (UK) Green Roof Design Guidelines.

LEED & BREEAM CREDITS.

Moy Extensive Green Roofs are locally sourced where possible, with over 80% of the bulk mass material being produced or grown in Ireland, reducing the carbon footprint and promoting sustainability.

Core is identificant that the content of the domain are accepted however blow blanchink. It and is material accepted are not accepted and the domain are not or how the induced accepted and the domain are not or how the induced accepted accepted and accepted a

Figure 12.1 Section showing typical extensive green roof components

As mentioned earlier, there are two main types of green roof:

Extensive green roofs – These systems cover the entire roof area with hardy, slow growing, drought tolerant, low maintenance plants (eg mosses, succulents, herbs, grasses) often enhanced with wildflowers. Planting often establishes more slowly, but the long-term biodiversity can be of high value. They are only accessed for maintenance and can be flat or sloping. Extensive green roofs typically comprise a 20–150 mm thick growing medium and can be further divided into "single-layer" systems (which consist of a single medium designed to be free-draining and support plant growth), and "multi-layer" systems that include both a growing medium layer and a separate underlying drainage layer. They are lightweight and low cost to maintain, and can be used in a wide variety of locations with minimal intervention. They are often suitable for retrofit on existing structures due to their light weight. Biodiverse extensive green roofs are often planted with a mix of species supported by a range of soil depths.

Intensive green roofs (or roof gardens) – These are designed to sustain more complex landscaped environments that can provide high amenity or biodiversity benefits. They are planted with a range of plants including grasses, shrubs and/or trees, either as ground cover or within planters, and may also include water features and storage of rainwater for irrigation (ie blue roof elements). They are usually easily accessible, as they normally require a fairly high level of regular maintenance, and in some cases they are made accessible to the public. Intensive roofs have a deeper substrate, with >150 mm growing medium, and therefore impose greater loads on the roof structure.

Green roofs with substrate depths of 100–200 mm tend to be semi-intensive roofs, and can include characteristics of both extensive and intensive roofs, with plants that include shrubs and woody plants. Irrigation and maintenance requirements of this type of roof will be dependent upon the plant species chosen for the roof. There are also various combinations of green roof that combine both types in a single roof system.

A comparison of the main differences between extensive and intensive green roof systems is given in Table 12.1.

blackdown

Green Roof Systems

Blackdown

Extensive Green Roof

Blackdown extensive green roofs provide a lightweight, drought tolerant and low maintenance planting solution. They are suitable for lightweight roof decks, inaccessible roofs, flat or sloping roofs. Ongoing maintenance will keep extensive green roofs looking healthy and attractive

Vegetation

Extensive green roofs rely on hardy, drought tolerant sedum plants to form the majority of the planting. The sedums that Blackdown select and grow at the nursery in Somerset represent years of experience and horticultural knowledge.

There are three planting options to choose from – sedum NatureMat®, plugs or hydroplant (sedum cuttings).

Key Features

Substrate

Blackdown extensive substrates are made from carefully selected organic and inorganic materials. These materials are then blended to very specific proportions which enables plant material to establish as quickly as possible.

Waterproofing

Typical waterproofing options include suitable root-resistant bituminous membranes from the Derbigum and Euroroof ranges along with standing seam metal roofing.

Warranty

Warranties are available for the Alumasc waterproofing system used in the green roof build-up.

Build-up height	100mm
Drainage layer	25mm
Saturated weight	95-100 kg per m²
Plant coverage at installation	<5 to 90%
Maximum pitch	45 degrees
Irrigation requirements	Not required once plant material is established
Maintenance requirements	Twice a year

Appendix 12.14

Met Eireann Data

Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 320619, Northing: 222316, Met Eireann

	Inte	rval						Years								
NO	6months,	lyear,	2,	З,	4,	°,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
ins	2.6,	3.8,	4.4,	5.5,	6.2,	6.7,	8.6,	10.7,	12.2,	14.3,	16.2,	17.6,	19.9,	21.7,	23.2,	N/A ,
ins	3.6,	5.3,	6.2,	7.6,	8.6,	9.4,	12.0,	15.0,	17.0,	19.9,	22.5,	24.6,	27.8,	30.3,	32.4,	N/A ,
ins	4.2,	6.2,	7.3,	9.0,	10.1,	11.0,	14.1,	17.6,	20.0,	23.4,	26.5,	28.9,	32.7,	35.6,	38.1,	N/A ,
ins	5.6,	8.1,	9.5,	11.6,	13.0,	14.1,	17.9,	22.2,	25.0,	29.2,	32.8,	35.7,	40.2,	43.7,	46.7,	N/A ,
urs	7.4,	10.5,	12.3,	14.9,	16.7,	18.0,	22.6,	27.9,	31.4,	36.3,	40.7,	44.2,	49.5,	53.7,	57.1,	N/A ,
urs	9.7,	13.7,	15.9,	19.2,	21.4,	23.1,	28.7,	35.1,	39.3,	45.2,	50.5,	54.6,	61.0,	65.9,	70.0,	N/A ,
urs	11.4,	16.0,	18.5,	22.2,	24.7,	26.6,	33.0,	40.1,	44.8,	51.4,	57.3,	61.8,	68.8,	74.3,	78.8,	N/A ,
ars	12.8,	17.9,	20.6,	24.7,	27.4,	29.5,	36.4,	44.1,	49.2,	56.3,	62.6,	67.5,	75.1,	80.9,	85.7,	N/A ,
ours	15.1,	20.9,	24.0,	28.6,	31.7,	34.0,	41.8,	50.4,	56.1,	64.0,	71.0,	76.5,	84.8,	91.2,	96.5,	N/A ,
ours	17.8,	24.4,	27.9,	33.1,	36.6,	39.3,	48.0,	57.7,	64.0,	72.8,	80.6,	86.6,	95.7,	102.8,	108.6,	N/A ,
since	20.0,	27.3,	31.1,	36.8,	40.6,	43.5,	52.9,	63.4,	70.3,	79.7,	88.1,	94.5,	104.3,	111.9,	118.1,	N/A ,
ars	23.5,	31.9,	36.2,	42.7,	47.0,	50.2,	60.8,	72.5,	80.1,	90.7,	, 6. 96,	107.0,	117.8,	126.2,	133.0,	N/A ,
urs	26.4,	35.6,	40.4,	47.4,	52.1,	55.6,	67.1,	79.8,	88.0,	99.3,	109.3,	116.9,	128.5,	137.3,	144.7,	169.9,
lays	33.2,	43.8,	49.2,	57.2,	62.4,	66.4,	79.0,	92.8,	101.7,	113.8,	124.4,	132.4,	144.6,	153.9,	161.5,	187.6,
ays	38.7,	50.4,	56.4,	65.1,	70.7,	75.1,	88.7,	103.5,	112.9,	125.7,	136.9,	145.3,	158.1,	167.8,	175.7,	202.8,
ays	43.5,	56.3,	62.7,	72.0,	78.1,	82.7,	97.2,	112.8,	122.7,	136.2,	147.8,	156.7,	170.0,	180.1,	188.3,	216.2,
ays	52.0,	66.5,	73.7,	84.1,	90.8,	95.9,	111.9,	128.9,	139.7,	154.3,	166.9,	176.4,	190.6,	201.4,	210.1,	239.8,
ays	59.6,	75.5,	83.4,	94.7,	102.0,	107.5,	124.7,	143.0,	154.6,	170.2,	183.5,	193.6,	208.6,	220.0,	229.2,	260.4,
ays	66.6,	83.7,	92.3,	104.4,	112.2,	118.1,	136.4,	155.9,	168.1,	184.5,	198.6,	209.1,	224.9,	236.8,	246.5,	279.0,
lays	73.1,	91.4,	100.5,	113.4,	121.7,	127.9,	147.3,	167.7,	180.5,	197.8,	212.5,	223.5,	240.0,	252.4,	262.4,	296.1,
ays	85.3,	105.7,	115.8,	130.1,	139.2,	146.0,	167.3,	189.5,	203.4,	222.1,	237.9,	249.8,	267.4,	280.7,	291.4,	327.4,
ays	96.5,	119.0,	129.9,	145.4,	155.3,	162.7,	185.5,	209.4,	224.3,	244.2,	261.0,	273.6,	292.4,	306.4,	317.8,	355.7,
ays	109.8,	134.4,	146.4,	163.2,	174.0,	182.0,	206.7,	232.4,	248.4,	269.7,	287.7,	301.1,	321.1,	336.0,	348.0,	388.1,
·																
ata n	ot availai	ble														

N/A Data not available
These values are derived from a Depth Duration Frequency (DDF) Model
For details refer to:
 'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin',
 Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

320619E 222316N SAAR = 1003mmKilternan Village M5/60 = 18.0= 0.271

Appendix 12.15

Land Owner Agreements

Liscove Limited First Floor, Maple House, Lower Kilmacud Road, Stillorgan, Co. Dublin

- 2 JUN 2022

25th May 2022

Re: Letter of Consent to Planning Application

Strategic Housing Development Application for 383 Residential Dwellings and a Neighbourhood Centre on lands at Wayside, Enniskerry Road and Glenamuck Road, Kilternan, Dublin 18

To Whom It May Concern,

I refer to the above intended planning application, the site of which includes lands in the ownership of the Jackson Family (Fredrick, Brendan, Damien & Aine Jackson), specifically lands annotated in Green on the attached drawing.

I confirm that the Jackson Family has no objection to the inclusion of these lands for the purpose of making the planning application.

Yours Fredrick Jackson Brendan Jackson Damien Jackson

Aine Jackson

Newtown House, Newtown, Eadestown, Naas, Co. Kildare

CANNONS

SOLICITORS

(Incorporating THOMAS P. O'CONNOR)

First Floor,

Maple House,

Lower Stillorgan Road, Stillorgan,

Co. Dublin Telephone 01 278 5016 (From UK 00-353-1-278 5016) Fax 01 2784503

DX 103 004 Stillorgan e-mail: cannons@securemail.ie

Joseph P. Kelly

Suhaila Othman

Our ref: JK/PD/

your ref:

Date: 8th June 2022

The Directors, Liscove Limited, First Floor, Maple House, Stillorgan, Co. Dublin

RE: Liscove Limited – Strategic Housing Development Application for 383 residential dwellings and Neighbourhood Centre on lands at Wayside, Enniskerry Road and Glenamuck Road, Kilternan, Dublin 18

Dear Sirs,

I refer to the above intended planning application. I refer also to letter of 25th May 2022 from Frederick, Brendan, Damien and Aine Jackson consenting to the inclusion of their lands notated in green on the drawing attached to their letter which lands are also shown notated in green on the drawing attached to this letter.

I confirm that Liscove Limited has the benefit of an easement over the area shown coloured yellow on the attached drawing which easement is for the benefit of the entire of its lands at Wayside, Enniskerry Road and Glenamuck Road, Kilternan, Dublin 18 and which easement includes a right to connect to all existing services running through the lands shown coloured yellow on the said drawing.

Yours faithfully,

Joseph P] Principal CANNON

Liscove Limited First Floor, Maple House, Lower Kilmacud Road, Stillorgan, Co. Dublin

25th May 2022

Re: Letter of Consent to Planning Application

Strategic Housing Development Application for 383 Residential Dwellings and a Neighbourhood Centre on lands at Wayside, Enniskerry Road and Glenamuck Road, Kilternan, Dublin 18

To Whom It May Concern,

I refer to the above intended planning application, the site of which includes lands in the ownership of Goodrock Project Management Limited specifically lands annotated in Green on the attached drawing.

I confirm that Goodrock Project Management Limited has no objection to the inclusion of these lands for the purpose of making the planning application.

Yours faithfully

Brendan Jackson Director Goodrock Project Management Limited Newtown House, Newtown, Eadestown, Naas, Co. Kildare

Deloitte.

10th June 2022

Liscove Limited First Floor, Maple House, Lower Kilmacud Road, Stillorgan, Co. Dublin

Our Ref: THEX0113-01/KF/BOR/AC

Re: Letter of Consent to Planning Application

Strategic Housing Development Application for 383 Residential Dwellings and a Neighbourhood Centre on lands at Wayside, Enniskerry Road and Glenamuck Road, Kilternan, Dublin 18

To Whom It May Concern,

I refer to the above intended planning application, the site of which includes lands in the ownership of Ken Fennell as Statutory Receiver over the assets of Carrickmines Partnership specifically lands annotated in Pink/Purple on the attached drawing.

I confirm that Ken Fennell as Statutory Receiver over the assets of Carrickmines Partnership has no objection to the inclusion of these lands for the purpose of making the planning application.

Yours faithfully For and on behalf of Certain assets of the Carrickmines Partnership (In Receivership)

Ken Fennell Statutory Receiver

Note: The Receiver contracts only as an agent of the mortgagor(s) and without personal liability

Deloitte Ireland LLP is a limited liability partnership registered in Northern Ireland with registered number NC1499 and its registered office at 27-45 Great Victoria Street, Lincoln Building, Belfast, BT2 7SL, Northern Ireland. Deloitte Ireland LLP is the Ireland affiliate of Deloitte NSE LLP, a member firm of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee ("DTTL"). DTTL and each of its member firms are legally separate and independent entities. DTTL and Deloitte NSE LLP do not provide services to clients. Please see www.deloitte.com/about to learn more about our global network of member firms.

The Deloitte Ireland LLP privacy notice is available at <u>www.deloitte.le/privacy</u>.

© 2022 Deloitte Ireland LLP. All rights reserved

A list of Deloitte Ireland LLP partners may be inspected at our office or on our website.

Deloitte Ireland LLP Deloitte & Touche House 29 Earlsfort Terrace Dublin 2 D02 AY28 Ireland

Tel: +353 (1) 417 2200 Fax: +353 (1) 417 2300 Deloitte.ie

Appendix 12.16

Irish Water Confirmation Of Feasibility (CoF) Letter & Statement of Design Acceptance

Neil Durkan

1st Floor, Maple House Lower Kilmacud Road, Stillorgan Co. Dublin A94E3F2

Oifig Sheachadta na Cathrach Theas Cathair Chorcaí Irish Water

Uisce Éireann Bosca OP 448

30 May 2022

www.water.ie

Delivery Office Cork City

PO Box 448, South City

Connection for Multi/Mixed Use Development of 444 units at Enniskerry Road, Kilternan, Dublin

Re: CDS21006509 pre-connection enquiry - Subject to contract | Contract denied

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Enniskerry Road, Kilternan, Dublin (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH TO PROCEED.
Water Connection	Feasible without infrastructure upgrade by Irish Water
Wastewater Connection	Feasible without infrastructure upgrade by Irish Water
	SITE SPECIFIC COMMENTS
	The proposed wastewater connection for this development connects to the Irish Water network via infrastructure that has not been taken in charge by Irish Water (Third Party Infrastructure). Please be advised that at connection application stage and prior to the commencement of any Self- Lay Works, you have to:
Wastewater Connection	 identify and procure transfer to Irish Water of the arterial infrastructure within the Third-Party Infrastructure
	 demonstrate that the arterial infrastructure is in compliance with requirements of Irish Water Code of Practice and Standard Details and in adequate condition and capacity to cater for the additional load from the Development.

Stlärthöir / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Dawn O'Driscoll, Mana O'Dwyer. Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Chath 1. D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1. D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water Is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363 The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marina Byrne from the design team via email mzbyrne@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

Monne Maesis

Yvonne Harris Head of Customer Operations Neil Durkan 1st Floor, Maple House Lower Kilmacud Road, Stillorgan Co. Dublin A94E3F2

1 June 2022

Re: Design Submission for Enniskerry Road, Kilternan, Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS21006509

Dear Neil Durkan,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Marina Byrne Phone: 01 89 25991/ 087619321 Email: mzbyrne@water.ie

Yours sincerely,

VORNE Massing

Yvonne Harris Head of Customer Operations

Uisce Èireann Bosca OP 449 Orlig Sheachadta me Cathrach Theas Cathrach Chorcal

trish Water PD Box 448. South City Delicery Office Class City

anarez over mit im

Appendix A

Document Title & Revision

- RMA 2104-06 Foul Drainage Sheet 1
- RMA 2104-07 Foul Drainage Sheet 2
- RMA 2104-27 Foul Longitudinal Sections Sheet 1
- RMA 2104-28 Foul Longitudinal Sections Sheet 2
- RMA 2104-29 Foul Longitudinal Sections Sheet 3
- RMA 2104-30 Foul Longitudinal Sections Sheet 4
- RMA 2104-09 Watermain Layout Sheet 1
- RMA 2104-10 Watermain Layout Sheet 2

Additional Comments

The design submission will be subject to further technical review at connection application stage.

While Irish Water notes that the water and wastewater services infrastructure for the Housing Cell 13 (Apartment Blocks C&D) and the Neighbourhood Centre will remain private and not be vested, we have the following comments: It is recommended that the foul sewer should have 3 m clearance from the proposed building.

For further information, visit <u>www.water.ie/connections</u>

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

Stlärthöir / Directors: Cathal Marley (Chairman), Nall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Dawn D'Drisiuli, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Balin Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Tabot Street, Dublin 1 D01 NP85 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn staireanna á Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhír Chláraithe In Éirinn / Registered in Ireland No.; 530363

12	Proposed													C0:141	2011-1	01.041	a3.7π	1500 @
fh1 FMh														141.85	141.92	140.18 140.85	40.0m	1500 @ 1/60
E																		
143.00	142.00	141.00	140.00	139.00	138.00	137.00	136.00	1.35.00	134.00	133.00	00 12 1	00.061	Datum=129.00mOD	Existing Levels	Proposed Cover Levels	Proposed Invert Levels	Pipe Length	Pipe Size & Gradlent

h15												06'SET	26.251	14,451		
F																
143.00	142.00	140.00	139.00	138.00	136.00	135.00	134.00	133.00	132.00	131.00	130.00 atum=129.00 m0D	Existing Levels	Proposed Cover Levels	Proposed Invert Levels	Pipe Length	Pipe Size & Gradlent

OThis drawing is Copyright and must only be used for

Rev

FMh5							5 <u>7.8</u> 51	81,851	06'521 132'90	7	225Ø		ECATES CLATES
		Proposed	All Doro Pa							36.0m	2250 @ 1/27	FMh49	ARKEY & ASSO ral and Civil Engine Mote -353 87 222.491
FMh52						<u>s</u>	140.2	140.24	10.851		150	199-162 142.30 1448	VIDATE DESCRUPTION VIDATE DESCRUPTION OGGER MULLA CONSulting Structu onsulting Structu onsulting 3755 mail. info@mullarhey.
151	Fishing Sound						in the second	67'161	c7'951		2250 @ 1,	FM H47 F7 H2 H5 H42 H5 F6 F1 142 H5 F6 F1 142 H5 F5	
h50 FMI						2	145.2	142.00	0+'821	a 22.0m	2250 @ 1/150	Mid6 140.20 142.69 142.80 24.2m 24.2m 24.2m 24.2m 24.2m 24.2m 26.0m 1/120 20.0m 20	al ohier rekvant Engineers are dimensions. are dimensions. are specifically continued by tun (inCO). tun (inCO). are provided by trigh Water if h dis. reprove and more and Code of dis. coording and him M CoP boording for Uthere his provided for Uthere
<u> </u>										0.0m	225Ø @ 1/140	Rown Proposed Ground Proposed Ground Proposed Ground Proposed Ground Proposed Ground Proposed Ground Proposed Ground Proposed Ground Combined Science For Mh54 to FMh5	Vertical Scale 1:100 Horrzontral Scale 1:100 Horrzontral Scale 1:500 Reacting denieg horuncien with and Achiects dening a horuncien with and Achiects dening a dening an orly with and Achiects dening a dening an orly with the Engineer setting and a All weis actions to orket a leaving commencing any sit of weignment by the transfer or dening and of de Botor Hist or dening and method and weign. 7. Manhe defails and matalial signader Presto. 8. Engineerie and method Presto. 10. When come familia dening and the dening and method Presto.
FMh43		-				-0	0°2≑€	145.00	1 38.84			E 28.2 142.92 142.92 E 28.2 E 29.2 E	
	Proposed Ground									48.0m	2250 @ 1/150	FMh53 1:100 = 1:500 = 1:500	
- FM 43						<u> </u>	<u>141.31</u>	142.21	21.951	58.0m	225Ø @ 1/150	FMDI LONGITUAL FMD36 to vertical Scale Horizontal Scale 142.01 144.00 14	
FMh41		ii=140.20				0	145.3(12.241	55'621	34.0m	2250 @ 1/80	136.36 takes 0	134'16 132'00
8 FMh39						0) <u>7.5</u> 41	77.241	86'621 86'21	14.0m	5Ø @ 1/120	1,440mm 1,440mm B=132.96	40.50m 2250 @ 1/117 ection 57
FMh3	Proposed Ground					2	<u>145.7</u>	145.65	16.01	45.5m	1/100 22	909/2ET 22:7ET	Mul Longitudinal S FMh53 to FMh5 vertical scale 1:100 Horizontal scale 1:500
FMh37						0	143.00	143.00	141'36		@ 22.960.30	138:20 138:90 06'821 02	FO
36						0	143.00	20.541	52.141	9.1m	150Ø (1/60	S2'861 81'961	00 13 13 13 13 13 13 13 13 13 13

_	
8	
6	
c	
0	
e 1	
-	
. .	
S 1	
9	
- 6	
6 '	
S	
Q _1	
-	
90 1	
e 1	
-	
- 1	
2:1	
9	
-	
"	
21	
22	
22	
3	
-	
90	
a	
-	
- m	
Se 1	
v 1	
4	
TR	
22.1	
81	
-	
T	
2	
5	
8	
-	
S	
SO I	
~	
50 I	
R	
54.1	
59 I	
u i	
-	
M	
-	
D	
e* 1	
-	
x	
≥ 1	
< I	
F	
~	
in l	
26	
~	
-	
n)	
-	

 Drawing Title

 FOUL LONGITUDINAL

 FOUL LONGITUDINAL
 Architect

 SECTIONS- Sheet 2
 Architects

 Date
 Drawing No.
 Stage

 Oct'21
 RM
 Stage

 Oct'21
 RM
 Stage

REFER TO Dwg.No.2104/06-07 FOR PLAN ALICAMENT OF FOUL SEVER SHOWN ON THIS DRAWING

Foul Longitudinal Sec FMh53 to FMh57 Vertical Scale 1:100 Hortzontal Scale 1:500	
---	--

143.00	FMh16	FMh17	FMh18
142.00			225Ø S/W-
141.00			II=140.71
140.00			
139.00			
138.00			
137.00			
136.00			
135.00			
tum=134.00mOD			
Existing Levels	02'1+1	02'1ez	91-2+C
Proposed Cover Levels	141.65	49'I4I	01,541
Proposed Invert Levels	140.24	09'6£1	65.651
Pipe Length	39.0m	24.5m	
Pipe Size & Gradient	225Ø @ 1/60	2250 @ 1/120	2250 @ 1/1

140.00	139.00	138.00	137.00	136.00 Datum=135.00mOD	Existing Levels	Proposed Cover Levels	Proposed Invert Levels	Pipe Length	Pipe Size & Gradient

141.00

D.	
lote	
cti	
alo.	
2	
5	
(foi	
sec	
3	
h b	
8	
mat	
r p	
E .	
jų d	
Dyr	
ŝ	
5	
2	
Lav	
is d	
É	

Rev

Stage PLANNING

 Date
 Drawn By As
 Scales As
 Dwg.No.

 Oct'21
 RM
 shown and and
 2104/29

THIS IS A RE-PLANNING DRAWING FOR APPROVAL OF THE IRISH WATER CDS SECTION

REFER TO Dwg.No.2104/06-07 FOR PLAN ALIGNMENT OF FOUL SEWER SHOWN ON THIS DRAWING

-Mh23	$\left\ \right\ $				00791	145'10	65'0 7 1	*	
143.00	142.00	141.00	140.00	139.00 00.00 00m00.8E1=mute	Existing Levels	Proposed Cover Levels	Proposed Invert Levels	Pipe Length	Pipe Size &

Foul

Foul Longitudinal FMh3 to FMh4 vertical scare 1:100 Horizontal Scale 1:500 Section

PLANNING

Roger Mullarkey

From:	Antonio Garzon Mielgo <antonio.garzon@water.ie></antonio.garzon@water.ie>
Sent:	Wednesday 1 June 2022 11:06
То:	Roger Mullarkey
Cc:	CDS Design QA; Marina Zivanovic Byrne
Subject:	Re: CDS21006509 Kilternan Co. Dublin - SoDA
Attachments:	Statement of Design Acceptance - PCE 01-06-2022 10-35-30.pdf

Hi Roger,

Please find attached the Statement of Design Acceptance for the above project.

Please let me know if you need any clarification.

Regards, Antonio

From: Roger Mullarkey <info@rmullarkey.ie>
Sent: 31 May 2022 11:55
To: Antonio Garzon Mielgo
Cc: CDS Design QA; Marina Zivanovic Byrne
Subject: Re: CDS21006509 Kilternan Co. Dublin - Email 1 of 3

CAUTION: This email originated from outside of your organisation. Do not click links or open attachments unless you recognise the sender and are sure that the content is safe.

Thanks Antonio. We will update those few notes and issue to you later today. Thanks for the quick response.

Kind Regards, Roger Mullarkey

From: Antonio Garzon Mielgo <Antonio.Garzon@water.ie>
Sent: Tuesday, May 31, 2022 11:51:51 AM
To: Roger Mullarkey <info@rmullarkey.ie>
Cc: CDS Design QA <cdsdesignqa@water.ie>; Marina Zivanovic Byrne <mzbyrne@water.ie>
Subject: Re: CDS21006509 Kilternan Co. Dublin - Email 1 of 3

Hi Roger,

Please see additional comments below:

- The Duplex D1 arrangement is clearer now. For the commercial units, please indicate a bulk meter flow meters in accordance with STD-W-26G and Section 3.15.3 of the Water Code of Practice. (The service connections for the domestic units is correct as it is shown).

- I note that the 100mm dia. connection to the Neighbourhood Centre is to remain as private. However, I would like to make some clarifications. As the daily demand exceeds the equivalent of 40 domestic units I would include a similar note as follows: "meters for apartments or similar properties will be installed internally within the premises in accordance with the Building Controls Authority Requirements and subject to review by Irish Water". Also include a note indicating the need of bulk flow meters in accordance with STD-W-26G and Section 3.15.3 of the Water Code of Practice for the commercial units. (No need to show the internal arrangement, but a note may suffice) Additionally, I would include the same note if the Housing Cell no. 13 has a daily demand over 40 units.

Additionally, I would include the same note if the Housing Cell no. 15 has a daily demand t

Let me know if you need further clarification.

Regards, Antonio

From: Roger Mullarkey <info@rmullarkey.ie>
Sent: 31 May 2022 09:34
To: Antonio Garzon Mielgo
Cc: CDS Design QA; Marina Zivanovic Byrne
Subject: RE: CDS21006509 Kilternan Co. Dublin - Email 1 of 3

CAUTION: This email originated from outside of your organisation. Do not click links or open attachments unless you recognise the sender and are sure that the content is safe.

Many thanks Antonio

Kind Regards,

Roger Mullarkey BScEng, DipEng, CEng, EurIng, MIEI, FConsEI

Roger Mullarkey & Associates

Consulting Engineers Structural & Civil Duncreevan, Xilcock, Co.Kildare Ph: 01 6103755 Mob: 087 2324917 Email: info@rmullarkey.ie Web: www.rmullarkey.ie

This contents and attachments of this email are strictly confidential and are intended for the sole usage of the addressee only. If you are not the intended recipient, you are hereby expressly forbidden to copy, disseminate, distribute or in any other way use this communication and must delete the email and contents immediately and contact the sender. While we have endeavoured to keep the email and contents virus free, it is the recipients own responsibility to ensure that the message and attachments are virus free and no responsibility is accepted by Roger Mullarkey & Associates for any loss or damage from viruses that may occur. Thank you for your cooperation with the above.

Roger Mullarkey & Associates is the Registered Business Name of Deep Sky Ltd., Reg.No. 518149

From: Antonio Garzon Mielgo <Antonio.Garzon@water.ie>
Sent: Tuesday 31 May 2022 09:28
To: Roger Mullarkey <info@rmullarkey.ie>
Cc: CDS Design QA <cdsdesignqa@water.ie>; Marina Zivanovic Byrne <mzbyrne@water.ie>
Subject: Re: CDS21006509 Kilternan Co. Dublin - Email 1 of 3

Hi Roger,

We have received the 3 emails. Thanks for the feedback and clarifications. Let me have a look on this and come back to you during the day.

Regards, Antonio

From: Roger Mullarkey <<u>info@rmullarkey.ie</u>>
Sent: 30 May 2022 20:38
To: Antonio Garzon Mielgo
Cc: CDS Design QA; Marina Zivanovic Byrne
Subject: RE: CDS21006509 Kilternan Co. Dublin - Email 1 of 3

CAUTION: This email originated from outside of your organisation. Do not click links or open attachments unless you recognise the sender and are sure that the content is safe.

Email 1 of 3 Antonio – thank you for your email.

I have broken down this response/submission into three separate emails due to the size of the file attachments as follows;

This email No.1 - Foul Layout Dwg.No.'s 2104/05-07 and the Water/Wastewater Demand Calculations Email No.2 – Watermain Drawings No's 2104/09-11

Email No.3 - Foul Long Sections Dwg.No.'s 2104/27-30 and Water & Drainage Phasing Dwg.No.2104/18

In response to your observations noted below; Watermain

- The water connection to the Neighbourhood Centre (NC) is a single point connection into the private internal water system that will contain an internal distribution system to a construction stage design by the mechanical/electrical consultant. Therefore there are no individual commercial connections from he public main as all will be supplied from the internal centralised system. This will all remain as private under the control of a management company. The 100mm diameter connection is to remain as private.
- 2. Loops have been amended to make sure a min. of 4No.units are connected to the loop as requested.
- 3. The hydrants noted have been moved into non-private locations apologies for the previously positioned in error.
- 4. Hydrants/Valves where located in grassed areas are now noted as typically surrounded in concrete to Irish Water specifications.

Foul Drainage

- 1. Any manhole and specifically FMh42 & FMh43, located in grassed areas are now noted as typically surrounded in concrete to Irish Water specifications.
- 2. The connection from Apartment Blocks C/D will be a private drainage (and water) system and further detail can be agreed at connection stage if required. I have amended the outfall to include

2No.backdrop manholes (see section on Dwg.2104/30) limiting the backdrop to 1.75m in each. Gradients are not to exceed 1:20.

- 3. The gradient between FMh59 to FMh60 has been amended and is illustrated in section on Dwg.No.2104/27
- 4. The gradient between FMh16 to FMh17 has been amended to 1:60 as requested and noting also that there are 12No.units connected onto this pipe as the ground floor is commercial and the upper floors are residential duplexes which would not have been apparent from the previously issued drawings. Hopefully this is now better illustrated and apologies for any confusion.

Ground Conditions have been considered as noted and the appropriate safe construction methods will be employed as the scheme progresses, subject to the successful grant of planning of course.

Hopefully the above narrative and the attachments in this and the following 2No.emails address your observations and you will now be in a position to issue the Statement of Design Acceptance at your earliest convenience please.

Appreciating that you are likely very busy, the issuing of a Statement of Design Acceptance is very urgent for the Applicant as the SHD process is ceasing shortly and our application must go to print nd be submitted as soon as possible.

Antonio, we would greatly appreciate if you could acknowledge receipt of these 3 emails please, thank you.

Kind Regards,

Roger Mullarkey BScEng, DipEng, CEng, EurIng, MIEI, FConsEI

Consulting Engineers Structural & Civil ⊅uncreevan, ≮ilcock, €o.Kildare Ph: 01 6103755 Mob: 087 2324917 Email: info@rmullarkey.ie Web: www.rmullarkey.ie

Roger Mullarkey & Associates

This contents and attachments of this email are strictly confidential and are intended for the sole usage of the addressee only. If you are not the intended recipient, you are hereby expressly forbidden to copy, disseminate, distribute or in any other way use this communication and must delete the email and contents immediately and contact the sender. While we have endeavoured to keep the email and contents virus free, it is the recipients own responsibility to ensure that the message and attachments are virus free and no responsibility is accepted by Roger Mullarkey & Associates for any loss or damage from viruses that may occur. Thank you for your cooperation with the above. **Roger Mullarkey & Associates is the Registered Business Name of Deep Sky Ltd., Reg.No. 518149**

From: Antonio Garzon Mielgo <<u>Antonio.Garzon@water.ie</u>>
Sent: Monday 30 May 2022 15:59
To: Roger Mullarkey <<u>info@rmullarkey.ie</u>>

Cc: CDS Design QA <<u>cdsdesignqa@water.ie</u>>; Marina Zivanovic Byrne <<u>mzbyrne@water.ie</u>> **Subject:** CDS21006509 Kilternan Co. Dublin

Customer Number: CDS21006509

Dear Roger,

Irish Water has carried out a review of the design submission for a proposed development at the above address. Please see below comments that require further clarification or amendment in order to ensure compliance with Irish Water's Codes of Practice and Standard Details.

Refer to the Irish Water's Codes of Practice; Sections 2.3, 2.4 and 3.5 and the suite of Standard Details to ensure the expected minimum standards of drawings required to carry out design vetting as part of a submission. Digital copies of the Codes of Practice and Standard Details can be downloaded at the following address: <u>https://www.water.ie/connections/developer-services/</u>.

Proposed Watermain Layout

• Please note that all commercial premises require an individual service connection and external bulk flow meter. Please indicate all commercial service connections and bulk flow meters in accordance with STD-W-26G (for 25-32mm diam. pipe) and Section 3.15.3 of the Water Code of Practice. The meter is to be selected, supplied, and fitted by Irish Water. (See snap below from drawing 2104/09). Please update accordingly.

• Also, in the snap above, please confirm that 100mm dia. watermain is in compliance as no new watermain up to and including 150mm in diameter shall be laid within **3m** of an existing or proposed structure. See section 3.5.9 of Water Code of Practice.

• Please note that loops shall have a minimum of four connected houses and one hydrant. See Section 3.5.14 of the Water Code of Practice. See snap below from drawing 2104/09

• The hydrants indicated in the parking space / road / shared space as per snaps below from drawing 2104/10 are not permitted. Hydrants shall not be located in trafficked areas. See Section 3.5.23 of the Water Code of Practice.

Air valve and hydrants covers, where located in grass areas, shall be surrounded by a concrete plinth, 200mm all round and 100mm deep, formed with C20/25 concrete, 20mm aggregate size, and bedded in Clause 804 material. The plinth shall incorporate mild steel reinforcement links and shall have a bull-nose finish around its external perimeter. See Section 3.18 of Water Code of Practice. An additional general may suffice.

Proposed Foul Drainage Layout

• Please note that, where manhole covers are to be located in soft landscaped/grass areas; to ensure that manhole covers are identifiable, accessible and will not become overgrown, covers are to be surrounded by a concrete plinth, 200mm all round and 100mm deep formed with C20/25 concrete, 20mm aggregate size, bedded in Clause 804 material. (Applicable to FMh42 & FMh43.). An additional general note may suffice.

• The connection point from the private drainage from Apartment blocks C&D is subject to review at Connection Application Stage. Please note, that for pipes less that 450mm diameter, the maximum permissible vertical backdrop is 2.5m. In cases where this vertical drop is exceeded, multiple backdrop manholes should be utilised, with connecting pipes at a 1:20 gradient to mitigate the vertical drop required. Refer to Section 3.6 of the Wastewater Code of Practice and standard details STD-WW-12 for guidance. Please amend accordingly.

• Please note a maximum permissible gradient of a 225mm diameter sewer is 1:20. Gradient of the line FMh59 to FMh60 is currently too steep. Please review and resubmit an alternative proposal for this area. Refer to Section 3.6 of the Wastewater Code of Practice and standard details STD-WW-12 for guidance.

• Please note a 150mm (or 225mm) gravity sewer should be laid at a gradient not flatter than 1:60 where there are less than 10 dwelling units connected. See Section 3.6.5 of the Wastewater Code of Practice. The following sewer lines are not in compliance: FMh16 to FMh17 (8 no. dwellings). Please amend.

Ground Conditions

• Please ensure you have accounted for site specific ground conditions and taken appropriate design measures if applicable.

Once the above items have been addressed to the satisfaction of Irish Water, a Statement of Design Acceptance for this development will be issued.

Design Responsibility

You, the applicant/applicant's agent (including any designers/contractors or other related parties appointed by the applicant), are entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "Self-Lay Works"), as reflected in your Design Submission.

Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works or any associated errors or omissions.

If you have any further queries, please don't hesitate to get in touch.

Kind Regards, Antonio Garzón Connections & Developer Services - Design Engineer

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential, commercially sensitive and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is prohibited and may be unlawful. Irish Water accepts no liability for actions or effects based on the prohibited usage of this information. Irish Water is neither liable for the proper and complete transmission of the information contained in this communication nor for any delay in its receipt. If you received this in error, please contact the sender and delete the material from

Appendix 12.17

Glenamuck Distributor Road Scheme (GDRS) Correspondence

From: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie> Sent: Tuesday 13 April 2021 16:48 To: Roger Mullarkey Cc: Thompson Adrian Subject: RE: GDRS Kilternan Attachments: 170172-DBFL-0500-SP-DR-C-1008-P01-Surface Water, Foul Sewer & Wa.pdf; 170172-DBFL-RD-SP-M2-C-0001_Road2d.dwg; 170172-DBFL-0500-SP-DR-C-1009-P02-Surface Water, Foul Sewer & Wa.pdf

Hi Roger,

The work in progress services drawings are attached for reference – service provision to your site is unchanged from what was provided 16/10/20 and is not intended to be changed.

The attached scheme Cad should be suitable for your needs. There's a couple of design tweaks still ongoing but none would have any significant impact on the landholding in question or would affect your CPO extents.

Thanks John

John Carr

Associate Civils

+ 353 1 4004000

+353 851264411

John.Carr@dbfl.ie

?Cork ?Dublin ?Waterford

www.dbfl.ie

Civil, Structural & Transportation Engineering

From: Roger Mullarkey <info@rmullarkey.ie> Sent: Tuesday 13 April 2021 10:40 To: Thompson Adrian <athompson@DLRCOCO.IE> Cc: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie> Subject: RE: GDRS Kilternan

Adrian/John - just a reminder on the below request for drawings/info please?

Kind Regards,

Roger Mullarkey BScEng, DipEng, CEng, EurIng, MIEI, FConsEI

Roger Mullarkey & Associates Consulting Engineers Structural & Civil Duncreevan, Kilcock, Co.Kildare Ph: 01 6103755 Mob: 087 2324917 Email: info@rmullarkey.ie Web: www.rmullarkey.ie

This contents and attachments of this email are strictly confidential and are intended for the sole usage of the addressee only.

If you are not the intended recipient, you are hereby expressly forbidden to copy, disseminate, distribute or in any other

way use this communication and must delete the email and contents immediately and contact the sender. While we have

endeavoured to keep the email and contents virus free, it is the recipients own responsibility to ensure that the message and attachments are virus free and no responsibility is accepted by Roger Mullarkey & Associates for any loss or damage

from viruses that may occur. Thank you for your cooperation with the above.

Roger Mullarkey & Associates is the Registered Business Name of Deep Sky Ltd., Reg.No. 518149

From: Roger Mullarkey Sent: Tuesday 30 March 2021 11:36 To: Thompson Adrian <athompson@DLRCOCO.IE> Cc: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie> Subject: GDRS Kilternan

Hi Adrian & John and I hope all is well with you both.

As you may be aware the Kilternan Village lands are now in new ownership and we are representing this new Client in finalising discussions relating to the interface between the GDRS and our Clients site. In order to complete the CPO's we need the latest version of the overall GDRS scheme drawings in both dwg and pdf format please. We have currently have two differing draft versions on file and would like to make sure we are all on the same page. If you could include the previously discussed service connection locations on those drawings would be great too please.

Give me a call anytime to discuss the above if needed guys, thank you.

Kind Regards,

Roger Mullarkey BScEng, DipEng, CEng, EurIng, MIEI, FConsEI

Roger Mullarkey & Associates Consulting Engineers Structural & Civil Duncreevan, Kilcock, Co.Kildare Ph: 01 6103755 Mob: 087 2324917 Email: info@rmullarkey.ie Web: www.rmullarkey.ie

This contents and attachments of this email are strictly confidential and are intended for the sole usage of the addressee only.

If you are not the intended recipient, you are hereby expressly forbidden to copy, disseminate, distribute or in any other

way use this communication and must delete the email and contents immediately and contact the sender. While we have

endeavoured to keep the email and contents virus free, it is the recipients own responsibility to ensure that the message and attachments are virus free and no responsibility is accepted by Roger Mullarkey & Associates for any loss or damage

from viruses that may occur. Thank you for your cooperation with the above.

Roger Mullarkey & Associates is the Registered Business Name of Deep Sky Ltd., Reg.No. 518149

From: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie>
Sent: Friday 16 October 2020 11:23
To: Roger Mullarkey
Cc: Thompson Adrian; boreilly@deloitte.ie; Tom Kirby
Subject: RE: 170172 - Glenamuck District Roads Scheme
Attachments: 170172-DBFL-0100-SP-DR-C-1008-DRAFT.pdf; 170172-DBFL-0100-SP-DR-C-1009-DRAFT.pdf; 170172-DBFL-2700-SP-SK-C-0020A-DRAFT.pdf; 170172-DBFL-0500-SP-DR-C-1009-DRAFT.pdf; 170172-DBFL-0500-SP-DR-C-1008-DRAFT.pdf; 170172-DBFL-0500-SP-DR-C-1008-DRAFT.pdf; 170172-DBFL-0500-SP-DR-C-1008-DRAFT.pdf; 170172-DBFL-0500-SP-DR-C-1008-DRAFT.pdf; 170172-DBFL-0300-SP-DR-C-1008-DRAFT.pdf; 170172-DBFL-0300-SP-DR-C-1008-DRAFT.pdf;

Hi Roger,

See attached drawings as requested.

Thanks John

From: Roger Mullarkey <info@rmullarkey.ie> Sent: Monday 5 October 2020 12:09 To: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie> Cc: Thompson Adrian <athompson@DLRCOCO.IE>; boreilly@deloitte.ie; Tom Kirby <tkirby@dob.ie>; Kevin Sturgeon-DBFL Consulting Engineers <Kevin.Sturgeon@dbfl.ie> Subject: RE: 170172 - Glenamuck District Roads Scheme

Hi John – just wondering if you had made any progress in completing a final agreement drawing incorporating all the CP lands access/servicing agreements yet please?

Kind Regards,

Roger Mullarkey BScEng, DipEng, CEng, EurIng, MIEI, FConsEI

Roger Mullarkey & Associates Consulting Engineers Structural & Civil Duncreevan, Kilcock, Co.Kildare Ph: 01 6103755 Mob: 087 2324917 Email: info@rmullarkey.ie Web: www.rmullarkey.ie

This contents and attachments of this email are strictly confidential and are intended for the sole usage of the addressee only.

If you are not the intended recipient, you are hereby expressly forbidden to copy, disseminate, distribute or in any other

way use this communication and must delete the email and contents immediately and contact the sender. While we have

endeavoured to keep the email and contents virus free, it is the recipients own responsibility to ensure that the message and attachments are virus free and no responsibility is accepted by Roger Mullarkey & Associates for any loss or damage

from viruses that may occur. Thank you for your cooperation with the above.

Roger Mullarkey & Associates is the Registered Business Name of Deep Sky Ltd., Reg.No. 518149

From: Roger Mullarkey Sent: Wednesday 23 September 2020 12:47 To: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie> Cc: Thompson Adrian <athompson@DLRCOCO.IE>; boreilly@deloitte.ie; Tom Kirby <tkirby@dob.ie>; Kevin Sturgeon-DBFL Consulting Engineers <Kevin.Sturgeon@dbfl.ie> Subject: RE: 170172 - Glenamuck District Roads Scheme

John – I think that all the comments we have and our Clients are OK with the outcome. Can we now get the final agreed drawings for the Glenamuck Road end and the GDRS as it crosses the CMP lands showing all the piped services, gates, walls, fences, temp land take, etc. please?

Kind Regards,

Roger Mullarkey BScEng, DipEng, CEng, EurIng, MIEI, FConsEI

Roger Mullarkey & Associates Consulting Engineers Structural & Civil Duncreevan, Kilcock, Co.Kildare Ph: 01 6103755 Mob: 087 2324917 Email: info@rmullarkey.ie Web: www.rmullarkey.ie

This contents and attachments of this email are strictly confidential and are intended for the sole usage of the addressee only.

If you are not the intended recipient, you are hereby expressly forbidden to copy, disseminate, distribute or in any other

way use this communication and must delete the email and contents immediately and contact the sender. While we have

endeavoured to keep the email and contents virus free, it is the recipients own responsibility to ensure that the message and attachments are virus free and no responsibility is accepted by Roger Mullarkey & Associates for any loss or damage

from viruses that may occur. Thank you for your cooperation with the above.

Roger Mullarkey & Associates is the Registered Business Name of Deep Sky Ltd., Reg.No. 518149

From: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie>

Sent: Wednesday 23 September 2020 11:31

To: Roger Mullarkey <info@rmullarkey.ie>

Cc: Thompson Adrian <athompson@DLRCOCO.IE>; boreilly@deloitte.ie; Tom Kirby <tkirby@dob.ie>; Kevin Sturgeon-DBFL Consulting Engineers <Kevin.Sturgeon@dbfl.ie>

Subject: RE: 170172 - Glenamuck District Roads Scheme

Thanks Roger - That looks like basically everything closed out. Comments below

From: Roger Mullarkey <info@rmullarkey.ie> Sent: Tuesday 22 September 2020 18:21 To: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie> Cc: Thompson Adrian <athompson@DLRCOCO.IE>; boreilly@deloitte.ie; Tom Kirby <tkirby@dob.ie>; Kevin Sturgeon-DBFL Consulting Engineers <Kevin.Sturgeon@dbfl.ie> Subject: RE: 170172 - Glenamuck District Roads Scheme Hi John, hope you had a decent break away from the joys of work ! Thanks for your response comments and I amend our additional comments following the same numbering below;

1(a) – Our Client accepts that any access will be part of a planning permission in the future and they also accept your proposal to allow for a agricultural gate here for now, thank you. We wanted you to make sure that whatever the Glenamuck Road alignment/lanes/margins/cycle tracks are designed will not prevent our Client from getting a new road entrance in the future. Therefore, can you indicate on your drawings that the potential kerb radii (as per the AutoCAD drawing I sent you on the 4th last) can be achieved and are as such are "reserved" for future development? A small pocket of sloped ground behind the gate is acceptable
Great - See attached sketch. Agricultural entry will have simple drop kerb and concrete apron facilitating access across verge. I've also shown a potential kerb returned future entry with 6m kerb radii for reference. There is a verge available to allow deflections of the cycle track and raised entry treatment if needed for future entrance. I've made the overall wall opening wide enough to accommodate road plus footpaths including the path to the apartments shown in your plan. Ignore the earthworks slopes shown – these will be updated to take account of wall, pocket etc

1(b) - The pipe levels are important to us so I attached a revised location for the outfalls and if achieve 2m below the finished GR road level here then the inverts will lower than we need and are therefore acceptable (will be c.130mOD) – let me know if this is OK please. We'll accommodate pipes here at approx. 130mOD

2 - The retaining wall is acceptable to our Client in a similar manner to that shown on your cross section and noting that the wall would have to begin around chainage c.420m (was noted as Ch500 on your drawing) – please confirm this is so. Temp working space is acceptable also John but the ground is to reinstated to similar condition and at a level no lower than 1m below existing.

Noted – Wall starts at approx. CH 455 per sketch attached, beyond this we are matching the existing back of kerb location and level so the existing can be retained

3 - OK

4-OK, reluctantly.

Also John, our Client would like to be able to show any potential site purchasers the GLDR/GDRS/Glenamuck Rd impacts on their landholding, is it OK to use what you have sent us today before for that purpose?

Unless DLRCC have an issue I thinks its reasonable to share the design intent agreed once it is caveated as such

Cheers.

Kind Regards,

Roger Mullarkey BScEng, DipEng, CEng, EurIng, MIEI, FConsEI

Roger Mullarkey & Associates Consulting Engineers Structural & Civil Duncreevan, Kilcock, Co.Kildare Ph: 01 6103755 Mob: 087 2324917 Email: info@rmullarkey.ie Web: www.rmullarkey.ie

This contents and attachments of this email are strictly confidential and are intended for the sole usage of the addressee only.

If you are not the intended recipient, you are hereby expressly forbidden to copy, disseminate, distribute or in any other

way use this communication and must delete the email and contents immediately and contact the sender. While we have

endeavoured to keep the email and contents virus free, it is the recipients own responsibility to ensure that the message and attachments are virus free and no responsibility is accepted by Roger Mullarkey & Associates for any loss or damage

from viruses that may occur. Thank you for your cooperation with the above.

Roger Mullarkey & Associates is the Registered Business Name of Deep Sky Ltd., Reg.No. 518149

From: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie>

Sent: Tuesday 22 September 2020 14:47

To: Roger Mullarkey <info@rmullarkey.ie>

Cc: Thompson Adrian <athompson@DLRCOCO.IE>; boreilly@deloitte.ie; Tom Kirby <tkirby@dob.ie>; Kevin Sturgeon-DBFL Consulting Engineers <Kevin.Sturgeon@dbfl.ie>

Subject: RE: 170172 - Glenamuck District Roads Scheme

Hi Roger,

I was on leave so just working my way through emails.

See responses below

Thanks John

From: Roger Mullarkey <info@rmullarkey.ie> Sent: Friday 4 September 2020 17:29 To: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie> Cc: Thompson Adrian <athompson@DLRCOCO.IE>; boreilly@deloitte.ie; Tom Kirby <tkirby@dob.ie>; Kevin Sturgeon-DBFL Consulting Engineers <Kevin.Sturgeon@dbfl.ie> Subject: RE: 170172 - Glenamuck District Roads Scheme

John,

Apologies for just getting back now and just following up on previous discussions as follows;

1. Dwg. of the Glenamuck Road end of the site with preferred location of road access, watermain and drainage attached.

* There is currently no vehicular access from Glenamuck Road and the existing vehicle access to this plot is not affected by the scheme. No development entrances are being provided without planning permission across the scheme. DLRCC are however open to accommodating an opening in the boundary and agricultural gate. Given the very significant level differences the access road will not be formed – a cut slope and possibly a small pocket would be left behind the gate and any further earthworks associated with a development access road would be the responsibility of the landowner.

* The pipe levels proposed are approx. 4m deep in Glenamuck road which is far deeper than our proposed pipe levels (typ max 2m depth). It is anticipated that bedrock is present at shallow depths in Glenamuck road. Therefore we would propose that your levels are revisited or alternatively we could provide the stubs at the lower end of the site where provision of

pipework at the approximate levels requested would not result in excessive excavation – you could potentially then route your gravity pipework past the proposed apartments to this connection point?

2. The section at the Glenamuck Rd end is important John as our site had intended an apartment block sitting just at the boundary at a FFL of c.137.50mOD so we would need to protect the existing levels at boundary here. The levels local to the proposed access road were to be graded down to c.134.50mOD onto the Glenamuck Rd but the apartment block and surrounding ground was to remain at or above existing ground. Therefore, a retaining wall would be required east and west from the access point. There was no intention to lower the ground levels in the wooded area to the NW of the site (approaching the Enniskerry Rd junction) and the preference would be to leave the site levels at they are John. A retaining wall perhaps?

DLRCC are open to providing a retaining wall here to replace the existing wall. Retained height will be up to 2.5m so we may propose some minor ground lowering directly behind the wall to limit retained height. We anticipate a railing will be required on the top of wall to ensure it is safe from the high side – See attached some concept sections of the typical arrangement and arrangement at access. We would require a temporary working area of approx 7.5m behind the wall for construction

3. The proposed access and levels onto Glenamuck Rd were intended as per below extract image;

4. Our Client is insistent that stone faced walls be constructed along the GLDR section of the GDRS.

DLRCC have advised that the provision of a post and rail fence on the boundary of the GDRS was one of the items agreed with the six major landowners in the area (including the Carrickmines Partnership) following discussions over an eighteen month period. Each landowner will provide their own boundary treatment as developed through the planning process. These discussions and agreements culminated in an agreed 'Heads of Terms' that will form the basis of the Council's purchase of these lands for the GDRS.

5. John – the S/W from the Eastern portion of the CP lands, Plot B, can drain northwards towards the regional attenuation pond along the c.127mOD contour and our Client would like to make sure that his c.2.1Ha lands are not prohibited access into the drainage catchment. These are development zoned lands and given that the GLDR/GDRS is a significant change to the area, the infrastructure should be able to service the affected/divided land owned by our Client. We request again that at the very least these Plot B lands have some capacity reserved (2Ha @ 21/s/Ha = c.41/s) in the new infrastructure notwithstanding the fact that the GLDR cannot put a pipe onto the lands directly. We just don't want the new road to preclude the possibility of accessing a S/W outfall in a north-westerly direction from Plot B. Refer to previous response on this (10. Below).

Kind Regards,

Roger Mullarkey BScEng, DipEng, CEng, EurIng, MIEI, FConsEI

Roger Mullarkey & Associates Consulting Engineers Structural & Civil Duncreevan, Kilcock, Co.Kildare Ph: 01 6103755 Mob: 087 2324917 Email: info@rmullarkey.ie Web: www.rmullarkey.ie

This contents and attachments of this email are strictly confidential and are intended for the sole usage of the addressee only.

If you are not the intended recipient, you are hereby expressly forbidden to copy, disseminate, distribute or in any other

way use this communication and must delete the email and contents immediately and contact the sender. While we have

endeavoured to keep the email and contents virus free, it is the recipients own responsibility to ensure that the message and attachments are virus free and no responsibility is accepted by Roger Mullarkey & Associates for any loss or damage

from viruses that may occur. Thank you for your cooperation with the above.

Roger Mullarkey & Associates is the Registered Business Name of Deep Sky Ltd., Reg.No. 518149

From: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie> Sent: Thursday 20 August 2020 15:56 To: Roger Mullarkey <info@rmullarkey.ie> Cc: Thompson Adrian <athompson@DLRCOCO.IE>; boreilly@deloitte.ie; Tom Kirby <tkirby@dob.ie>; Kevin Sturgeon-DBFL Consulting Engineers <Kevin.Sturgeon@dbfl.ie>

Subject: RE: 170172 - Glenamuck District Roads Scheme

Hi Roger,

I've added some responses below. I can also arrange a quick teams call if needed.

Thanks John

From: Roger Mullarkey <info@rmullarkey.ie> Sent: Friday 14 August 2020 14:58 To: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie> Cc: Thompson Adrian <athompson@DLRCOCO.IE>; boreilly@deloitte.ie; Tom Kirby <tkirby@dob.ie> Subject: RE: 170172 - Glenamuck District Roads Scheme

Hi John.

On review of the document you kindly issued on 28/07/20 last has provided most of the servicing request and our Client is appreciative of your cooperation in that regards. However, there are a few comments arising from your document as follows;

1. The proposed access location onto the Glenamuck Road is not where our Clients had previously required. You may remember that last year we had submitted a Pre-App to AnBP after protracted discussions/meetings with DLRCC that included agreement in principle for the access point onto the Glenamuck Road. It would appear that your current proposed access from Glenamuck Rd. is c.10m further north than our sites advanced design, as per below screenshot.

Happy to move the entrance to suitable location – please provide info on preference here. We were not involved in pre app discussions . We have only recently been appointed on the Golden ball upgrade section of the works so had included an extract from DLRCC drawings for reference until our own were prepared. As is the case across the scheme, development accesses are not being provided without approved planning permissions however we can provide an agricultural access here.

2. While our Client is grateful for your cooperation in the provision of the service spurs

from the Glenamuck Road, we would appreciate that the precise location is agreed between us so that there is a smooth interface between our sites advanced design and your projects design intentions. We can provide an AutoCAD drawing of the main drainage including invert levels if you need it – just let me know. Yes please provide intended design and we will endeavour to suit

3. Your drawing extract (above) indicates a Section A-A is available – may we have a copy please?

Again this is from the DLRCC drawings. See attached however this is likely out of date as a result of updated design and these discussions

4. Can you confirm that the lands taken up by the sloped embankment indicated above are included in the agreement with our Client? That is, any change in level/embankment on our Clients lands will result in sterile development ground and therefore must be accounted for in the "land-take" agreement.

The land take agreements are a matter for the landowner and DLRCC but we will try resolve technical issues to get clarity here. Refer to point 7

5. Appreciating that the recent works at Rockville included a new watermain along the Glenamuck Road, we wish to make sure that access to this watermain is not hindered by the Glenamuck Road upgrade works. To that end, we request that a 200mm diameter spur connection from the new watermain be brought into the public footpath at a precise location to be agreed between us but coincidental with the proposed roads access onto our Clients lands.

I note that the watermain is lad under the proposed footpath so there should be no issues with access. If a spur is still essential please provide preferred location and we will include subject to IW approval

6. In regards to Gas Networks Ireland, we discussed this in detail with Declan Reale of GNI and he has agreed to deal with you specifically regarding the provision of a gas main spur from the existing main in the Glenamuck Road into the public footpath. You might let me know that this requirement will be included in your Tender documents too please John.

Declan is due to update the gas design drawing – Ideally have him show this spur in this updated drawing and we will then include the relevant trenching in our tender

7. The boundary fencing is not agreed by our Client. The lands currently enjoy a stone wall as the site boundary in this location and our Client wishes to maintain a similar principle along the new boundary. Fencing won't do John, walls are needed.

Along the Glenamuck Road frontage there is an existing wall and DLRCC are happy to provide a wall here if desired as it is like for like. Some items to consider

* There will be a level difference between the road and site here. How is it intended to manage this level difference with regard to development levels and access road gradients etc. Are levels to be lowered?

* If so we could just provide a wall at back of footpath and excavate a slope out behind and your development could come along after and finish the ground lowering

* Alternatively we can provide a retaining wall here at back of path

* In either case we would propose the permanent land take to be at the pack of path and would require a temporary land take to facilitate construction.

8. Similar to point 7, our Client requires that DLRCC provide a more sturdy and robust form of boundary along both sides of the GDRS as it divides his lands. A stone faced wall and railing is acceptable to our Client but a post and rail fence is not.

I understand there have been protracted discussions on this item and the agreed site wide approach here is to provide a suitable stockproof fence at the land take line across the development land frontages. The final and permanent boundaries frontages would then be provided along with future development when an appropriate boundary to the development and urban design can be selected. We can look at other types of fence if desired however the indication to date is that walls are not to be provided.

9. Can you move the location of the field gate into the East lands (Plot B) up to the pedestrian crossing please, or as close as?

Yes we will move it to just south of the pedestrian crossing – obviously it cannot be right at the crossing 10. Notwithstanding the topographical constraints of Plot B gaining access into the adjacent GDRS S/W network, our Client needs to be reassured that there will be some form of piped culvert beneath the GDRS included downstream of Plot B that will access into the proposed attenuation pond surface water drainage network.

The SW network is based on the natural topography draining towards the road network and many parcels in the areas are therefore excluded from the catchment. Allowing for an area which currently drains elsewhere would undermine the drainage philopsopy adopted. The pond sizing and associated land take has also been fixed from planning stage and cannot be increased. What we can offer is providing a crossing from plot B back into plot A at the northern end. You would then have the option of selecting an appropriate overall attenuated discharge rate from the combined parcels which is in keeping with the regional pond design or could seek any other discharge measure as per normal practice – in any case SW measures would need to be approved by DLRCC drainage. I note the road network is not what is causing the issue with the storm discharge here and in fact provides significant benefits to the overall lands

Trusting the above is all clear John, we await your response to our Clients reasonable requests.

Kind Regards,

Roger Mullarkey BScEng, DipEng, CEng, EurIng, MIEI, FConsEI

Roger Mullarkey & Associates Consulting Engineers Structural & Civil Duncreevan, Kilcock, Co.Kildare Ph: 01 6103755 Mob: 087 2324917 Email: info@rmullarkey.ie Web: www.rmullarkey.ie

This contents and attachments of this email are strictly confidential and are intended for the sole usage of the addressee only.

If you are not the intended recipient, you are hereby expressly forbidden to copy, disseminate, distribute or in any other

way use this communication and must delete the email and contents immediately and contact the sender. While we have

endeavoured to keep the email and contents virus free, it is the recipients own responsibility to ensure that the message and attachments are virus free and no responsibility is accepted by Roger Mullarkey & Associates for any loss or damage

from viruses that may occur. Thank you for your cooperation with the above.

Roger Mullarkey & Associates is the Registered Business Name of Deep Sky Ltd., Reg.No. 518149

From: John Carr - DBFL Consulting Engineers <John.Carr@dbfl.ie>

Sent: Tuesday 28 July 2020 13:03

To: Roger Mullarkey <info@rmullarkey.ie>

Cc: Thompson Adrian <athompson@DLRCOCO.IE>; boreilly@deloitte.ie; Tom Kirby <tkirby@dob.ie> Subject: 170172 - Glenamuck District Roads Scheme

Roger,

As we near completion of the tender documents for the Glenamuck District Roads scheme we have prepared a brief summary of items related to your clients landholding in order to flush out any remaining items to resolve. This addresses items such as access, boundaries, servicing, construction

stage implications.

Please advise any comments you may have. Happy to have a call/ meeting as needed. The other servicing considerations discussed in separate email (attached) are also noted.

Thanks John

John Carr

Associate Civils

+ 353 1 4004000

+353 851264411

John.Carr@dbfl.ie

?Cork ?Dublin ?Waterford

w w w . d b f l . i e Civil, Structural & Transportation Engineering

Appendix 12.18

Water and Wastewater Calculations

Foul Wastewater	Calculations	for	TOTAL	SITE

New Network - DOMESTIC Wastewater Flows							
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loading (PxG)(l/day)		
Residential	383 Units	2.7No./Unit	1034	150		155,100	
				Total =	155,	100 l/day	
			Flov	vrate per day (l/s)		1.80l/s	
				Growth Rate	1	1	
				Infiltration (I)	10%	0.18	
				Dry Weather Flow	PG + I	1.97 l/s	
			Pea	aking Factor (Pf _{Dom)}	3		
Design Foul Flow (l/s)					Pf _{Dom} x PG	5.91 l/s	
Misconnection Allowance (SW)					1.5%	0.09l/s	
				Design Flow (l/s)		6.00 l/s	

Based on Irish Water Code of Practice Wastewater Infrastructure (Rev 2 July 2020)

New Netw	ork - COI	MMERCIAL W	astewater	Flows		
Usage	Quantity	Occupancy	Population	Consumption	Loa	ading
		(h)	(P)	(G)	(PxG)	(l/day)
				(l/h/day)	. ,	
Retail/Comm	2,975m ²	1per 5m ²	595	50		29,750
Crèche	439m ²	$1 \text{child} / 8 \text{m}^2 +$	65	50		3,250
		Staff (20%) +				
		accommodation				
				Total =	33,0	000 l/day
			Flowrate	per 12hr day (l/s)		0.76l/s
				Growth Rate	1	1
				Infiltration (I)	10%	0.08
			[Dry Weather Flow	PG +	0.83
					1	l/s
			Pea	king Factor (Pf _{Dom)}	6	
Design Foul Flow (l/s)					Pf _{Dom}	5.02
					x PG	l/s
			Misconnectio	on Allowance (SW)	1.5%	0.08l/s
				Design Flow (l/s)		5.1 l/s

Foul Wastewater Calculations for PHASE 1

New Network - DOMESTIC Wastewater Flows								
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loading (PxG)(l/day)			
Residential	91 Units	2.7No./Unit	246	150		36,855		
	Total =					355 l/day		
			Flov	vrate per day (l/s)		0.43l/s		
				Growth Rate	1	1		
				Infiltration (I)	10%	0.04		
				Dry Weather Flow	PG + I	0.47 l/s		
			Pea	king Factor (Pf _{Dom)}	6			
	Design Foul Flow (I/s)					2.8 l/s		
	PG							
			Misconnecti	on Allowance (SW)	1.5%	0.05l/s		
				Design Flow (l/s)		2.84 l/s		

Based on Irish Water Code of Practice Wastewater Infrastructure (Rev 2 July 2020)

Foul Wastewater Calculations for PHASE 2

New Network - DOMESTIC Wastewater Flows							
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loading (PxG)(l/day)		
Residential	73 Units	2.7No./Unit	197	150		29,565	
				Total =	29,	565 l/day	
			Flov	vrate per day (l/s)		0.34l/s	
				Growth Rate	1	1	
				Infiltration (I)	10%	0.03	
				Dry Weather Flow	PG + I	0.37 l/s	
			Pea	king Factor (Pf _{Dom)}	6		
Design Foul Flow (I/s) Pf _{Dom} x 2.25 PG						2.25 l/s	
			Misconnecti	on Allowance (SW)	1.5%	0.07l/s	
				Design Flow (l/s)		2.28 l/s	

Foul	Wastewater	Calculations	for	PHASE 24	•

New Network - DOMESTIC Wastewater Flows							
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loading (PxG)(l/day)		
Residential	53 Units	2.7No./Unit	80	150		11,925	
				Total =	11,9	925 l/day	
			Flov	vrate per day (l/s)		0.14l/s	
				Growth Rate	1	1	
				Infiltration (I)	10%	0.01	
				Dry Weather Flow	PG + I	0.15 l/s	
			Pea	king Factor (Pf _{Dom)}	6		
			Des	ign Foul Flow (l/s)	Pf _{Dom} x	0.92 l/s	
	PG						
			Misconnecti	on Allowance (SW)	1.5%	0.07l/s	
				Design Flow (l/s)		0.94 l/s	

Based on Irish Water Code of Practice Wastewater Infrastructure (Rev 2 July 2020)

New Netw	New Network - COMMERCIAL Wastewater Flows						
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loa (PxG)	ding (l/day)	
Retail/Comm	2,073m ²	1per 5m ²	415	50		20,750	
Crèche	439m ²	1child/8m ² + Staff (20%) + support accommodation	65	50		3,250	
				Total =	24,0	000 l/day	
						a = (1)	
			Flowrate	per 12hr day (l/s)		0.56l/s	
				Growth Rate	1	1	
				Infiltration (I)	10%	0.06	
			Ĩ	Dry Weather Flow	PG + I	0.62 l/s	
			Pea	king Factor (Pf _{Dom)}	6		
Design Foul Flow (I/s)					Pf _{Dom}	3.70	
					x PG	l/s	
			Misconnectio	on Allowance (SW)	1.5%	0.06l/s	
				Design Flow (l/s)		3.8 l/s	

Foul Wastewater Calculations for PHASE 3

New Network - DOMESTIC Wastewater Flows								
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loading (PxG)(l/day)			
Residential	59 Units	2.7No./Unit	154	150		23,028		
	Total =					028 l/day		
			Flov	vrate per day (l/s)		0.27l/s		
				Growth Rate	1	1		
				Infiltration (I)	10%	0.03		
				Dry Weather Flow	PG + I	0.30 l/s		
			Pea	aking Factor (Pf _{Dom)}	6			
Design Foul Flow (l/s)					Pf _{Dom} x	1.8 l/s		
			Misconnecti	on Allowance (SW)	1.5%	0.04l/s		
				Design Flow (I/s)		1.81 l/s		

Based on Irish Water Code of Practice Wastewater Infrastructure (Rev 2 July 2020)

Foul Wastewater Calculations for PHASE 4

New Network - DOMESTIC Wastewater Flows							
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loa (PxG)	Loading (PxG)(l/day)	
Residential	97 Units	2.7No./Unit	262	150		39,285	
				Total =	39,2	285 l/day	
			Flov	vrate per day (l/s)		0.46l/s	
				Growth Rate	1	1	
				Infiltration (I)	10%	0.05	
				Dry Weather Flow	PG + I	0.51 l/s	
			Pea	king Factor (Pf _{Dom)}	6		
Design Foul Flow (l/s) Pf _{Dom} x 3.03 l PG					3.03 l/s		
			Misconnecti	on Allowance (SW)	1.5%	0.04l/s	
				Design Flow (l/s)		3.08 l/s	

Foul Wastewater Calculations for PHASE 5

New Netv	vork - DO	New Network - DOMESTIC Wastewater Flows									
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loading (PxG)(l/day)						
Residential	10 Units	2.7No./Unit	27	150		4,050					
			L								
				Total =	4,0	050 l/day					
			Flov	vrate per day (l/s)		0.05l/s					
				Growth Rate	1	1					
				Infiltration (I)	10%	0.01					
				Dry Weather Flow	PG + I	0.05 l/s					
			Pea	aking Factor (Pf _{Dom)}	6						
	Design Foul Flow (I/s) Pf _{Dom} x 0.3 I/s PG										
			Misconnecti	on Allowance (SW)	1.5%	0.01l/s					
				Design Flow (l/s)		0.31 l/s					

Based on Irish Water Code of Practice Wastewater Infrastructure (Rev 2 July 2020)

New Network - COMMERCIAL Wastewater Flows									
Usage	Quantity	Occupancy (h)	Population (P)	Consumption (G) (l/h/day)	Loading (PxG)(l/day)				
Retail/Comm	902m ²	1per 5m ²	180	50		9,020			
	L								
	Total =	9,0	020 l/day						
			Flowrate	per 12hr day (l/s)		0.21l/s			
				Growth Rate	1	1			
				Infiltration (I)	10%	0.02			
				Dry Weather Flow	PG + I	0.23 l/s			
			Pea	king Factor (Pf _{Dom)}	6				
	Design Foul Flow (I/s) Pf _{Dom} x 1.38 I/s PG								
			Misconnecti	on Allowance (SW)	1.5%	0.02l/s			
				Design Flow (l/s)		1.4 l/s			

Foul Wastewater Calculations -PHASING SUMMARY

Usage	Resedential Design Flow (l/s)	Commercial Design Flow (l/s)		
Phase 1	2.8			
Phase 2	2.3			
Phase 2A	0.9	3.8		
Phase 3	1.8			
Phase 4	3.1			
Phase 5	0.3	1.4		

Water Demand Calculations for TOTAL SITE

New Network - DOMESTIC Water Demand										
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (l/day)	Ave. Daily Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)		
Resi'	383 Units	2.7 No./Unit	1034	150	155,115	1.80	2.24	11.2 l/s		
Peak Ho	our Water Do	emand (Dome	stic)					11.2 /s		

Based on Irish Water Code of Practice for Water Infrastructure (Rev 2 July 2020)

New Network - COMMERCIAL Water Demand										
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (I/day)	Ave. Daily(12hr) Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)		
Retail/ Comm	2,975m ²	1per 5m ²	595	50	29,750	0.69	0.86	4.3		
Crèche	439m ²	1child/8m ² + Staff (20%) + support accommoda tion	66	50	3,293	0.08	0.09	0.47		
Peak Ho	ir Water Der	nand (Commer	cial)					4 81/5		

Water Demand Calculations for PHASE 1

New Network - DOMESTIC Water Demand									
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (I/day)	Ave. Daily Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)	
Resi'	91 Units	2.7 No./Unit	246	150	36,855	0.43	0.53	2.7 l/s	
Peak Ho	our Water Do	emand (Dome	stic)					2.7 /s	

Based on Irish Water Code of Practice for Water Infrastructure (Rev 2 July 2020)

Water Demand Calculations for PHASE 2

New Network - DOMESTIC Water Demand										
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (I/day)	Ave. Daily Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)		
Resi'	73 Units	2.7 No./Unit	197	150	29,565	0.347	0.43	2.1 l/s		
Peak Ho	our Water De	emand (Dome	stic)					2.1 /s		

Water Demand Calculations for PHASE 2A

New Network - DOMESTIC Water Demand										
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (I/day)	Ave. Daily Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)		
Resi'	53 Units	2.7 No./Unit	143	150	21,465	0.25	0.31	1.55 l/s		
Peak Ho	our Water D	emand (Dome	stic)	•				1.6 /s		

Based on Irish Water Code of Practice for Water Infrastructure (Rev 2 July 2020)

New Network - COMMERCIAL Water Demand									
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (l/day)	Ave. Daily(12hr) Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)	
Retail/ Comm	2,073m ²	1per 5m ²	415	50	20,730	0.48	0.6	3.0	
Crèche	439m ²	1child/8m ² + Staff (20%) + support accommoda tion	66	50	3,293	0.08	0.09	0.47	
Peak Hou	ir Water Den	nand (Commer	cial)					2 41/s	

Water Demand Calculations for PHASE 3

New Network - DOMESTIC Water Demand										
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (I/day)	Ave. Daily Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)		
Resi'	59 Units	2.7 No./Unit	159	150	23,895	0.27	0.35	1.73l/s		
Peak Ho	our Water Do	emand (Dome	stic)					1.7 /s		

Based on Irish Water Code of Practice for Water Infrastructure (Rev 2 July 2020)

Water Demand Calculations for PHASE 4

New Network - DOMESTIC Water Demand										
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (I/day)	Ave. Daily Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)		
Resi'	97 Units	2.7 No./Unit	262	150	39,285	0.46	0.57	2.84l/s		
Peak Ho	our Water De	emand (Dome	stic)					2.8/s		

Water Demand Calculations for PHASE 5

New Network - DOMESTIC Water Demand								
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (I/day)	Ave. Daily Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)
Resi'	10 Units	2.7 No./Unit	27	150	4,050	0.05	0.06	0.29 l/s
Peak Hour Water Demand (Domestic)						0.3 /s		

Based on Irish Water Code of Practice for Water Infrastructure (Rev 2 July 2020)

New Network - COMMERCIAL Water Demand								
Usage	Quantity	Occupancy	Population	Consumption (l//h/day)	Ave. Daily Domestic Demand (l/day)	Ave. Daily(12hr) Domestic Demand (l/s)	Ave. Day/Peak Week (l/s)	Peak Hour Water Demand (l/s)
Retail/ Comm	902m ²	1per 5m ²	180	50	902	0.02	0.3	1.5
Peak Hour Water Demand (Commercial)							1 51/s	

Based on Irish Water Code of Practice for Water Infrastructure (Rev 2 July 2020)

Water Demand Calculations -PHASING SUMMARY

Usage	Resedential	Commercial		
	Design Flow (l/s)	Design Flow (l/s)		
Phase 1	2.7			
Phase 2	2.1			
Phase 2A	1.6	2.4		
Phase 3	1.7			
Phase 4	2.8			
Phase 5	0.3	1.5		

